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Figure 5: We propose a clari�cation of two notions of reliance behavior commonly con�ated in the literature. Outcome-graded
reliance is appropriate if the human decision maker accepts an AI recommendation when it is correct and rejects it otherwise;
note that this de�nition is conditioned on the post-hoc correctness of the AI. We argue this de�nition is problematic given its
outcome-dependent and nondeterministic nature. In contrast, strategy-graded reliance is behavior that defers to the AI when
its expected performance is superior to the human’s expected performance.

borrower ends up defaulting, while the other repays the
loan. The de�nition says it is ‘appropriate’ to rely on the AI’s
advice on one case but not on the other — even though they
are indistinguishable!

Instead, consider an alternative de�nition, strategy-graded re-
liance, where reliance is appropriate if the human accepts an AI
recommendation when the AI is expected to outperform the human,
and rejects otherwise (see Figure 5 right). Unlike outcome-graded
reliance, strategy-graded reliance is neither post-hoc nor nonde-
terministic; it considers the appropriateness of reliance given the
expected relative performance of the human and the AI. The opti-
mal strategy is to rely on the party most likely to have the correct
answer. A key question here is “Upon what information is that
expectation computed?” There are several possibilities.

• Past performance: If past experience shows the AI is more
likely to be correct than the human, it might be appropriate
to defer to the AI even without information about this par-
ticular decision instance. Note this policy cannot produce
complementary performance.

• Previous characteristics + instance features: Conditioning
on the current instance (i.e., speci�c details of the task at
hand) can lead to complementary performance. For example,
if a driver knew her auto-drive car was less prone to accidents
when on the freeway, she might con�dently take her hands
o� thewheel in that situation— even if she knew that shewas
the better driver onwinding country roads.When automated,
this type of conditioning resembles a human-AI delegation
work�ow (discussed at the end of §6.2).

• Previous characteristics + the AI’s recommendation: Con-
ditioning on the AI’s recommendation allows the human to
adopt a policy of the form “I know the AI is conservative and
very unlikely to err with a false positive, so I will accept pos-
itive recommendations and only scrutinize instances when
the AI o�ers a negative recommendation.”

• Previous characteristics + the AI’s explanation: In this pa-
per, we have argued this condition rarely improves upon the

previous strategy, and only when the explanation supports
veri�cation.

In contrast to complementary performance, which refers to the
team’s measured performance, both notions of reliance de�ne an
attribute of the human’s behavior relative to the AI. Furthermore,
while a policy of strategy-guided reliance will hopefully lead to
complementary performance, it’s not guaranteed to do so. In partic-
ular, if the human’s estimates of their relative accuracy (compared
to the AI) are poor, team performance may drop.

We believe the strategy-graded de�nition of reliance is the bet-
ter objective. To illustrate the shortcomings of outcome-graded
reliance, consider a decision making task in which the human is
historically 60% accurate, while the AI is 99.999% accurate. On any
given instance of the task, if the human is uncertain of the answer, is
it appropriate to rely on the AI’s recommendation? Intuitively, the
answer seems a clear ‘yes’. But if the AI is later found incorrect, the
outcome-graded de�nition says “Inappropriate,” while the strategy-
graded de�nition matches intuition and says “Appropriate.”

Outcome-graded reliance is similar to complementary perfor-
mance in that both qualities can only be measured post hoc. How-
ever, there are subtle di�erences between these notions, beyond
the fact that one measures a pattern of human behavior and the
other the performance of a human-AI team. For example, imagine
a AI-assisted image classi�cation task with 1000 potential classes.
Suppose two individuals, Avery and Blake, are 80% and 50% accurate
at the task alone, respectively, and the AI is 10% accurate. Luckily,
the AI outputs veri�able explanations, so both Avery and Blake
can perfectly tell when the AI is correct. Both follow a policy of ac-
cepting the AI’s recommendation when it is correct, and otherwise
solving the problem themselves. According to the de�nition, both
Avery and Blake have (near) perfect outcome-graded reliance, but
their strategies lead to very di�erent expected team performance:
82% for Avery and 55% for Blake.1

1Expected accuracy can be calculated as ⇢ [022�E4A~ ] = 0.1 + 0.8 ⇥ (1 � 0.1) = 0.82
for Avery and ⇢ [022⌫;0:4 ] = 0.1 + 0.5 ⇥ (1 � 0.1) = 0.55 for Blake. They both have
near perfect outcome-graded reliance because their policy dictates following the AI
when it is correct and not when it is incorrect; note there is a non-zero probability of
each individual trivially selecting the same incorrect answer as the AI.
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Albert Einstein was a German-born theoretical physicist, widely 
acknowledged to be one of the greatest and most influential 
physicists of all time. Albert Einstein was born in Ulm, in the Kingdom 
of Württemberg in the German Empire, on 14 March 1879 into a 
family of secular Ashkenazi Jews. His parents were were Hermann 
Einstein, a salesman and engineer, and Pauline Koch. In 1880, the 
family moved to Munich, where Einstein's father and his uncle Jakob 
founded Elektrotechnische Fabrik J. Einstein & Cie, a company that 
manufactured electrical equipment based on direct current.

Factoid QA (from trusted source)

Where was Albert Einstein born?

Ulm, Germany

Sentiment Analysis
Is this movie review positive or negative?

Positive

Right from the start the special effects wowed me and I was stunned. 
The theme was engaging and I felt transported to a different world. 
Despite a few too many twists and turns, the story was ok as well — a 
bit unbelievable, but I suppose that’s Hollywood today. My biggest 
concern was character development — there really wasn’t any. The 
stars fit into standard hero roles. Furthermore, no one changed over 
the course of the film. Thus, despite the promising beginning, my final 
conclusion was one of disappointment. Taken as a whole, I felt the 
move was terrible.

Example

AI Recommendation

AI Explanation

Example

AI Recommendation

AI Explanation

(correct) (incorrect)

Inspecting highlights is conclusive. Inspecting highlights is insufficient.Verification Verification

Figure 4: The utility of an explanation is not a simple function of explanation type, as these two examples illustrate. Both use
an explanation style that highlight key spans of text, but their ability to induce complementary performance is very di�erent.
While these explanations can be useful for factoid QA from trusted sources, they are less successful for sentiment analysis [7].
The di�erence lies in whether the human can reliably verify the AI’s answer by solely inspecting the highlighted text.

(e.g., environmental, social, or societal). For example, one might
be able to correlate a criminal’s probability for recidivism with
factors such as age or gender, but there is no perfect way to predict
the future. As a result, the utility of verifying a recommendation
becomes limited by the extent of stochasticity present in a task.

In summary, the more easily an explanation enables veri�cation
of prediction correctness, the more likely it is to produce com-
plementary performance. Note that both the semantic content of
the explanation and its presentation (i.e., the user interface which
presents the explanation) a�ect the ease of human veri�cation.
However, other factors may also contribute, such as a decision
maker’s desire to engage with explanations within cognitively ef-
fortful tasks (i.e., Need For Cognition [13]) and the task’s inherent
cognitive load.

4.3 Veri�cation and Human Intuitions
Human veri�cation of an AI recommendation (with or without
an explanation) is only possible if decision maker has su�cient
task-speci�c knowledge to characterize solutions. For instance,
veri�cation of an explanation in the maze solving task requires
implicit assumptions about the human’s understanding of the task
(e.g., what constitutes a valid path through a maze).

Chen et al. [19] present a similar framework to ours, articulating
how human intuitions can interact with AI explanations to improve
decision making. They describe various examples of task-speci�c
human intuitions; for instance, in prostate cancer diagnosis, intu-
itions might refer to knowledge of the location of the prostate in a
medical image and the association between darkness and tumor. In
sentiment analysis, intuitions might refer to an understanding of
language and its in�uence on polarity. Through their theoretical
framework, they suggest human intuitions can lead to complemen-
tary performance in one of two ways: revealing signs of model
error and supporting the discovery of novel knowledge.

In line with this theory, the belief that AI explanations could
su�ciently interact with task-speci�c human intuitions to reveal
model errors and thus enable complementary performance was a
keymotivation for providing AI explanations in AI-advised decision
making. In practice, however, this type of explanation does not
appear to produce complementary performance on most tasks.

5 WHAT IS APPROPRIATE RELIANCE?
Previous sections of this paper focus on complementary perfor-
mance — an ideal team that performs better than the human or
AI alone. However, many researchers strive instead to design XAI
systems that induce appropriate reliance.

Unfortunately, “appropriate reliance” is not well-de�ned within
the XAI literature. One common characterization suggests reliance
is appropriate if the human accepts an AI recommendation when the
AI is correct, and rejects the recommendation when the AI is incor-
rect [7, 13, 73, 82, 84, 88]. Reliance is therefore inappropriate when
the human accepts the recommendation when the AI is incorrect
(over-reliance), and when the human rejects the recommendation
when the AI is correct (under-reliance). This characterization cap-
tures a notion of outcome-graded reliance (see Figure 5 left), and
is evaluable given actual decision outcomes. Unfortunately, we
suggest outcome-graded reliance is inadequate to measure the per-
ceived improvements in decision making performance. There are
two major problems with the outcome-graded de�nition:

• Post-hoc: It is impossible to know if one’s reliance is ‘appro-
priate’ until after seeing the �nal result.Was it ‘inappropriate’
to see the best doctor in the world, if one happens to get an
unlucky outcome?

• Nondeterministic: Consider two identical examples (e.g.,
bank loan applications) whose input features are exactly the
same, and suppose theAI provides the same recommendation
in both cases (e.g., unlikely to default). But suppose that one
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theory that explains under what circumstances these explanations
can in fact improve decision making performance, if at all.

3 AI-ADVISED DECISION MAKING
We restrict our analysis of AI explanation utility to the established
paradigm of AI-advised decision making [6], de�ned as follows:

(1) Given an individual instance of a task, an AI makes a recom-
mendation, and possibly provides an explanation.

(2) A human decision maker makes the �nal decision, drawing
on features of the task, an AI’s recommendation, and (if
available) its explanation (Figure 2).

Moreover, we are concerned with the e�ect of explanations on
decision making performance via objective measures of e�cacy
such as accuracy, error rate, or speed of decision-making [5].

Beyond simply improving the performance of a human-AI team,
we are interested in complementary performance, where the human-
AI system performs better (for example, its accuracy is higher or
decisions are made more cheaply) than either the human or AI
separately. While complementarity is not necessary for AI assis-
tance to be deemed “useful,” for many researchers it is the intuitive
motivation for coupling a human and AI together. Furthermore, if
the consequence of using a human-AI team lowers performance (for
whatever metric is deemed most important), we should have clear
understanding of this e�ect.

Given the focus on complementary performance, we do not at-
tempt to characterize the utility (or lack thereof) of explanations
for other possible objectives in AI-advised decision making. These
include task-centered metrics such as subjective assessments of
e�cacy (e.g., self-rated accuracy, decision con�dence) or satisfac-
tion (e.g., cognitive load, helpfulness), and AI-centered metrics such
as trust and reliance on the AI, perceptions of AI fairness, and
understanding of the AI.

Explanations are often characterized based on the scope of infor-
mation they convey about an AI model. For decision making, the
existing literature largely studies the in�uence of local explanations,
which provide information about individual AI recommendations.
These include visualizations of model uncertainty, feature impor-
tance, rule-based explanations, example-based explanations, coun-
terfactual explanations, or natural language rationale explanations.
In contrast, global explanations aim to provide holistic insight into
the entirety of an AI model, for instance by visualizing or otherwise
detailing a model’s complete architecture. Faithfulness is another
dimension used to characterize explanations. A faithful explanation
is one that accurately represents the reasoning process behind a
model’s prediction. Some intrinsically interpretable models, such as
GA2Ms [17], are favored because it is (relatively) easy for a human
to understand the model’s behavior. Other explanations are gener-
ated by post-hoc analysis, e.g. using techniques such as LIME [71]
or SHAP [58]. While these methods produce local explanations for
otherwise inscrutable models, they are by de�nition approxima-
tions or a model’s true reasoning process, and hence raise concerns
of faithfulness.

In this paper, we present a theory of veri�cation agnostic to
these particular characterizations of explanations (local vs. global,
intrinsically interpretable vs approximate post-hoc). We argue ex-
planation faithfulness is largely irrelevant; the main issue that

a�ects decision making performance is whether the explanation
helps the human verify the proposed solution.

4 VERIFIABILITY
We argue that explanations can enable complementary per-
formance in AI-advised decision making to the extent they
allow a decision maker to verify an AI’s recommendation.
Here, we refer to veri�cation of a candidate answer as the process
of determining its correctness. In the psychology literature, this
notion is also called demonstrability and has been associated with
the ability of one individual being able to convince other members
to switch to a correct answer on ‘intellective’ problems such as
math puzzles [52].

Note that some problems may not have a veri�able answer, and
many AI explanations fundamentally cannot satisfy this desidera-
tum and thus do not e�ectively support complementary decision
making. For instance, one of themost common types of explanations
is local feature importance, e.g., model coe�cients of interpretable
models or approximate post-hoc explanations. These types of expla-
nations which describe a decision-making process can either align
with human intuitions, potentially resulting in con�rmation bias,
or contradict human intuitions, in which case a decision maker
may often �nd it more convenient to explain away any di�erences.
In the best case, the AI’s explanation reveals a salient misalign-
ment between the AI’s decision making process and its expected
behavior, allowing a decision maker to disregard the AI’s recom-
mendation. While feature importance explanations may provide
some indication of how much each feature in�uenced the AI’s de-
cision, they typically do not allow a decision maker to verify the
AI’s recommendation.

4.1 Useful Explanations Allow Veri�cation
To see the importance of veri�cation, consider the task of AI-advised
maze solving (similar to the study in [82]) — the goal is to determine
whether a valid path exists between a speci�ed entrance and exit
in the maze. The AI recommends a binary decision (i.e., yes or no),
and explains its decision with a highlighted path through the maze
to the exit. Without the explanation, a human cannot verify the
AI’s recommendation short of solving the maze themselves. Thus
the human must adopt a policy of blind trust or disregard the AI’s
advice — neither of which produce complementary performance.
Given the path, however, the decision maker is able to easily verify
the AI’s recommendation, �ltering mistakes, and only expending
e�ort to solve mazes where the AI errs. If the AI is reasonably good,
this does produce complementary performance [82].

Veri�cation given AI explanations in decision making closely
resembles veri�cation of certi�cates or solutions within canonical
NP-complete computational decision problems (Figure 3). While
�nding a solution to an NP-complete problem likely takes expo-
nential time, verifying the certi�cate can be done with polynomial
computation. In both contexts, while �nding a solution is challeng-
ing (e.g., requiring an exhaustive search), checking the correctness
of an explanation enables e�cient veri�cation of the answer.

Unfortunately, our maze example is unusual — explanations in
the tasks most commonly considered in XAI studies (e.g., recidivism
prediction, medical applications, sentiment analysis, or deceptive
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Maze and other NP-complete problems

XAI Problem

Solution

Complexity of  
Verification

Maze solving — Is there a valid path? 

Slow — exhaustive search

Fast with explanation — 
 linear in path length

NPC Problem Vertex coloring — Can the graph be 3-colored 
so no adjacent vertices share a color? 

Solution Slow — exponential search

Complexity of  
Verification

Fast with certificate —  
linear in # of edges

Figure 3: Tasks in which AI explanations have been shown to provide veri�cation of an AI recommendation (e.g., maze solving)
resemble NP-complete decision problems. Complementary performance can be achieved in these cases because the AI does the
time-consuming problem solving and the human can quickly verify the correctness of a solution. Of course, this veri�cation
process is task speci�c. Sometimes fast veri�cation is only possible for some answer types; for example, an illegal maze path
does not preclude the existence of a legal path. On average, however, these explanations speed human veri�cation [82].

review detection) do not enable veri�cation. Explanations for these
tasks typically include providing model coe�cients or key features,
which serve to elucidate the model’s decision making process rather
than enable veri�cation of a proposed decision.

For example, for a sentiment analysis task an AI model may
explain itself by highlighting spans of text which were most in�u-
ential to its decision (Figure 4 (right)). This may appear reassuring,
but can lead to a false sense of trust when the AI makes mistakes.
Indeed, user studies have shown that these explanations aren’t any
more helpful than seeing the AI’s internal con�dence [7]. A rare
exception where an AI explanation consisting of an extracted span
of text can lead to complementary performance is factoid ques-
tion answering from trusted sources (illustrated in Figure 4 (left));
such a span, even in isolation, does allow veri�cation of answer
correctness.

4.2 A Spectrum of Veri�cation
Whether an explanation a�ords veri�cation of a recommendation
is usually not an all or nothing proposition, but rather a point along
a spectrum. Characteristics of the human decision maker, the deci-
sion making task, and the AI explanation may in�uence where an
explanation lies along this spectrum— hence, determining its utility.
On one extreme are contexts that a�ord no veri�cation whatsoever,
such as problems where the actual outcomes are independent from
the problem features, or where all errors made by the AI assistance
are random rather than systematic. The other end of the spectrum
includes intractable but easily veri�able problems (e.g., the maze
solving task, NP-complete decision problems). But even the maze
task a�ords only one-sided veri�ability: an explanation depicting
an illegal path doesn’t imply that no solution exists.

Explanations do not need to provide complete veri�cation of an
AI recommendation. Rather, by su�ciently lowering the cost of
veri�cation, explanations can provide enough utility to improve
team performance [82]. Consider a variant of the maze solving
task where the AI provides an explanation which highlights 90% of
the path to the exit rather than the complete path. We argue this
explanation may reduce the human’s cognitive cost of verifying
the AI enough to yield complementary performance.

Another variation of the maze problem likely leads to a di�erent
result. Suppose the question is not just path existence, but opti-
mality. Speci�cally, consider the following variation on the maze
task: given a maze with a start and three alternative exits, which
of the exits can be reached with the shortest valid path from the
start? The AI recommends a single exit and explains by drawing a
path from the start to its speci�ed exit. We conjecture the following
hypotheses: 1) this explanation will not lead to complementary
performance for this task, since it doesn’t signi�cantly reduce the
cost of verifying the AI’s recommendation. However, 2) if the expla-
nation consisted of the shortest valid paths to all three exits, then
this would yield complementary performance.

With feature-based explanations on real-world decision-making
tasks, positive veri�cation is rarely possible. Instead, explanations
may be better suited to convey a fatal �aw in the AI’s decision mak-
ing process. For example, if an AI trained to classify lung cancer
from CT images justi�es its diagnosis by highlighting an artifact
outside the lung, that should raise concern [17]. Some studies have
shown that explanations can reveal model error to yield complemen-
tary decision making performance (in particular, when the revealed
errors are su�ciently egregious to indicate strong signals of model
unreliability) [21, 78]. However, across most decision making con-
texts, we believe there are two reasons why such explanations
frequently fail to produce complementary performance:

(1) Plausible but wrong: The AI may make a bad decision for
a credible reason (e.g., Figure 4 right). Hence, explanations
which clearly reveal model error to the human are rare.

(2) Right for the wrong reason: The AI’s recommendation
may still be right, even when its explanation is wrong. In this
case, the human may incorrectly reject the correct answer.
However, even if the human escapes that pitfall, they still
need to solve the problem from scratch, and no time is saved.

Many real-world decision making tasks, such as those involv-
ing inferences over human action, can further exhibit aleatoric
uncertainty, arising from the inherent stochastic nature of the de-
pendency between the observed instance features and the actual
decision outcome. In these cases, a correct decision is not entirely
determined by features evident to the human or the AI model, but
is also in�uenced by irreducible uncertainty within latent factors
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Paper Decision Making Task Explanations Enables
Veri�cation

Complementary
Performance

Biran and McKeown [10] Stock price prediction Rationale 7 7
Green and Chen [33] Pretrial detention Feature importance 7 7
Green and Chen [33] Financial lending Feature importance 7 7
Weerts et al. [85] Income prediction Feature importance 7 7
Lai and Tan [50] Deceptive review Feature importance (text highlights) 7 7
Lai et al. [49] Deceptive review Feature importance (text highlights) 7 7
Buçinca et al. [12] Food fat content prediction Feature importance 7 7
Carton et al. [16] Toxicity detection Feature importance (text highlights) 7 7
Zhang et al. [91] Income prediction Feature importance 7 7
Liu et al. [56] Recidivism prediction Feature importance 7 7
Alufaisan et al. [4] Income prediction Feature importance 7 7
Alufaisan et al. [4] Recidivism prediction Feature importance 7 7
Wang and Yin [84] Recidivism prediction Feature importance 7 7
Wang and Yin [84] Forest cover prediction Feature importance 7 7
Nourani et al. [66] Kitchen policy veri�cation Feature importance 7 7
Poursabzi-Sangdeh et al. [69] Apartment price prediction Feature importance 7 7
Jesus et al. [41] Fraud detection Feature importance (text highlights) 7 7
Nguyen et al. [65] Image classi�cation Attribution maps 7 7
Kim et al. [46] Image classi�cation Attribution maps & Prototype-based 7 7
Parrish et al. [68] Long document MCQA Rationale 7 7
Sivaraman et al. [75] Sepsis treatment Feature importance 7 7

Bansal et al. [7] Sentiment classi�cation Feature importance (text highlights) 7 ¢
Bansal et al. [7] Logical reasoning Rationale 7 ¢
Taesiri et al. [78] Image classi�cation Nearest neighbors 7 ¢
Feng and Boyd-Graber [27] Quizbowl trivia QA Rationale 3 3
González et al. [32] Wikipedia ODQA Rationale 3 3
Vasconcelos et al. [82] Maze solving Path highlights 3 3
Lee et al. [55] Multitask MCQA Rationale (interactive) 3 3
Bowman et al. [11] Long form MCQA Rationale (interactive) 3 3

Table 1: Recent studies investigating the e�ect of AI explanations on task performance in AI-advised decisionmaking. Common
explanation types include descriptions of feature importance (over both tabular and textual features) and natural language
rationales. Most of these explanations describe the AI’s decision-making process rather than help a human decision maker
verify the AI’s recommendation. But only the latter engender complementary performance (3), where team performance exceeds
that of the human or AI alone. Sometimes explanations which do not enable veri�cation may appear to yield complementary
performance (¢); however, in these cases, it is unclear whether explanations actually o�er utility as providing only AI recom-
mendations and con�dence scores (without the explanations) also resulted in complementary performance.

we propose two alternative terms: outcome-graded reliance and
strategy-graded reliance to tease these apart. Section 6 places our
conjecture in a broader context, and Section 7 concludes.

2 BACKGROUND
Providing interpretability for AI models, for instance through expla-
nations, has been one way researchers have attempted to facilitate
more informed and accurate decision making [9]. One set of studies
have found AI explanations can improve human-AI performance
over human decision making alone and over human-AI teams with
AI recommendations without explanations [10, 12, 13, 26, 38, 49, 50].
However, none of these studies found explanations could improve
human-AI performance beyond the original capabilities of the AI
model. The studies also involved collaborations in which the AI
model signi�cantly outperformed the human decision maker. It is
therefore unclear whether explanations truly improved the human-
AI decision making process, or if explanations convinced humans
to blindly trust the AI’s recommendations. In this type of scenario

— where the AI performs at a superhuman level — should we sim-
ply allow the AI to operate independently? It is arguably naive to
believe the human is performing any meaningful oversight, when
the e�ect of explanations is inducing blind trust.

In response, researchers have investigated how explanations
might support decision makers in developing appropriate reliance
on AI assistance, rather than improving performance through blind
trust. While appropriate reliance is not well-de�ned in the liter-
ature (as explained in §5), one common de�nition states that ap-
propriate reliance is achieved when decision makers agree with
the AI when its recommendation is correct, and disagree with the
AI when its recommendation is incorrect. Unfortunately, achiev-
ing this notion of appropriate reliance through explanations has
been elusive [3, 7, 16, 18, 33, 39, 41, 44, 56, 66, 68, 69, 75, 85, 91].
Fundamentally, it can be hard for people to know how much to
trust recommendations [12, 30, 40, 75]. And though AI explana-
tions were hypothesized to make the AI’s decision making process
more interpretable and in turn support appropriate reliance, most
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ABSTRACT
The current literature on AI-advised decision making — involving
explainable AI systems advising human decision makers — presents
a series of inconclusive and confounding results. To synthesize these
�ndings, we propose a simple theory that elucidates the frequent
failure of AI explanations to engender appropriate reliance and
complementary decision making performance. In contrast to other
common desiderata, e.g., interpretability or spelling out the AI’s rea-
soning process, we argue explanations are only useful to the extent
that they allow a human decision maker to verify the correctness of
the AI’s prediction. Prior studies �nd in many decision making con-
texts AI explanations do not facilitate such veri�cation. Moreover,
most tasks fundamentally do not allow easy veri�cation, regardless
of explanation method, limiting the potential bene�t of any type of
explanation. We also compare the objective of complementary per-
formance with that of appropriate reliance, decomposing the latter
into the notions of outcome-graded and strategy-graded reliance.

1 INTRODUCTION
Recent years have seen an explosion of work on explainable AI
(XAI), but there have been mixed results on whether explanations
actually help humans who are making decisions with AI support.
In this decision making context, the role of explanations is to foster
appropriate reliance by helping the human understand whether
or not the AI’s advice should be trusted. Appropriate reliance is
desired in order to achieve complementary performance, where
the human-AI team performs better than either the human or AI
alone [7]. But here we see a confusing montage of results: not
only do most papers �nd explanations don’t induce complementary
performance more than baseline methods, such as displaying AI
accuracy or con�dence, but these papers suggest explanations can
in fact increase over-reliance, where the human trusts the AI even
when it errs. The inconclusive nature of these results raises a huge
question for the �eld of XAI: when are explanations useful?

We focus solely on the process of AI-advised decision making,
de�ned as the following: given an instance of a decision making
task, an AI makes a recommendation, and drawing on features of
the task, the AI’s recommendation, and possibly an explanation
for the AI’s recommendation, a human decision maker arrives at
a �nal decision (Figure 1). There are many other possible uses for
AI explanations [47, 79], including model debugging and auditing,
e.g., to help the human understand whether the AI’s reasoning will
generalize, but our arguments pertain only to decision making.

In this paper, we present a perspective we believe explains the
seemingly mixed empirical results found throughout the XAI liter-
ature. Furthermore, our proposal is consistent with the way human

Decision Novel intuitions Assessment

Human

AI

Update

Model AuditKnowledge Discovery

Model Development

Decision Making

Recommendation

Explanation
+

Figure 1: Researchers suggest that AI explanations could aid
numerous human-AI processes, including decision making,
model development, knowledge discovery, and model audit.
In this paper, we focus solely on understanding whether ex-
planations are helpful in the context of AI-advised decision
making. We claim AI explanations cannot foster appropri-
ate reliance and engender complementary performance in
decision making, except in the rare instances in which they
e�ciently verify the AI’s recommendation.

groups reach consensus on “intellective” tasks [52]. We argue ex-
planations provided by an AI model are helpful in decision
making (engender complementary performance [7]) to the
extent they allow a decision maker to verify the AI’s recom-
mendation.While this theory may appear self-evident,

(1) Most work on XAI has focused instead on creating inher-
ently interpretable models or generating faithful post-hoc
explanations of the AI’s reasoning process.

(2) Most of these explanations do not support such veri�cation.
Explanations which faithfully expose the AI’s reasoning process
may well be useful for debugging the AI or predicting its ability
to generalize, but it does not seem to help human decision mak-
ers make judgements on individual task instances. Indeed, most
human-subject studies have shown that explanations fail to produce
complementary performance in decision making; the sole excep-
tions are explanations that support answer veri�cation (Table 1).

The rest of this paper is structured as follows. The next section
surveys the con�icting results from prior studies on XAI utility.
Section 3 details the decision making context, which is our focus in
this paper. Section 4 presents our core argument — explanations
must facilitate veri�cation in order to engender complementary
performance. Section 5 discusses the concept of appropriate reliance,
arguing this term has become overloaded, leading to confusion;
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Figure 5: We propose a clari�cation of two notions of reliance behavior commonly con�ated in the literature. Outcome-graded
reliance is appropriate if the human decision maker accepts an AI recommendation when it is correct and rejects it otherwise;
note that this de�nition is conditioned on the post-hoc correctness of the AI. We argue this de�nition is problematic given its
outcome-dependent and nondeterministic nature. In contrast, strategy-graded reliance is behavior that defers to the AI when
its expected performance is superior to the human’s expected performance.

borrower ends up defaulting, while the other repays the
loan. The de�nition says it is ‘appropriate’ to rely on the AI’s
advice on one case but not on the other — even though they
are indistinguishable!

Instead, consider an alternative de�nition, strategy-graded re-
liance, where reliance is appropriate if the human accepts an AI
recommendation when the AI is expected to outperform the human,
and rejects otherwise (see Figure 5 right). Unlike outcome-graded
reliance, strategy-graded reliance is neither post-hoc nor nonde-
terministic; it considers the appropriateness of reliance given the
expected relative performance of the human and the AI. The opti-
mal strategy is to rely on the party most likely to have the correct
answer. A key question here is “Upon what information is that
expectation computed?” There are several possibilities.

• Past performance: If past experience shows the AI is more
likely to be correct than the human, it might be appropriate
to defer to the AI even without information about this par-
ticular decision instance. Note this policy cannot produce
complementary performance.

• Previous characteristics + instance features: Conditioning
on the current instance (i.e., speci�c details of the task at
hand) can lead to complementary performance. For example,
if a driver knew her auto-drive car was less prone to accidents
when on the freeway, she might con�dently take her hands
o� thewheel in that situation— even if she knew that shewas
the better driver onwinding country roads.When automated,
this type of conditioning resembles a human-AI delegation
work�ow (discussed at the end of §6.2).

• Previous characteristics + the AI’s recommendation: Con-
ditioning on the AI’s recommendation allows the human to
adopt a policy of the form “I know the AI is conservative and
very unlikely to err with a false positive, so I will accept pos-
itive recommendations and only scrutinize instances when
the AI o�ers a negative recommendation.”

• Previous characteristics + the AI’s explanation: In this pa-
per, we have argued this condition rarely improves upon the

previous strategy, and only when the explanation supports
veri�cation.

In contrast to complementary performance, which refers to the
team’s measured performance, both notions of reliance de�ne an
attribute of the human’s behavior relative to the AI. Furthermore,
while a policy of strategy-guided reliance will hopefully lead to
complementary performance, it’s not guaranteed to do so. In partic-
ular, if the human’s estimates of their relative accuracy (compared
to the AI) are poor, team performance may drop.

We believe the strategy-graded de�nition of reliance is the bet-
ter objective. To illustrate the shortcomings of outcome-graded
reliance, consider a decision making task in which the human is
historically 60% accurate, while the AI is 99.999% accurate. On any
given instance of the task, if the human is uncertain of the answer, is
it appropriate to rely on the AI’s recommendation? Intuitively, the
answer seems a clear ‘yes’. But if the AI is later found incorrect, the
outcome-graded de�nition says “Inappropriate,” while the strategy-
graded de�nition matches intuition and says “Appropriate.”

Outcome-graded reliance is similar to complementary perfor-
mance in that both qualities can only be measured post hoc. How-
ever, there are subtle di�erences between these notions, beyond
the fact that one measures a pattern of human behavior and the
other the performance of a human-AI team. For example, imagine
a AI-assisted image classi�cation task with 1000 potential classes.
Suppose two individuals, Avery and Blake, are 80% and 50% accurate
at the task alone, respectively, and the AI is 10% accurate. Luckily,
the AI outputs veri�able explanations, so both Avery and Blake
can perfectly tell when the AI is correct. Both follow a policy of ac-
cepting the AI’s recommendation when it is correct, and otherwise
solving the problem themselves. According to the de�nition, both
Avery and Blake have (near) perfect outcome-graded reliance, but
their strategies lead to very di�erent expected team performance:
82% for Avery and 55% for Blake.1

1Expected accuracy can be calculated as ⇢ [022�E4A~ ] = 0.1 + 0.8 ⇥ (1 � 0.1) = 0.82
for Avery and ⇢ [022⌫;0:4 ] = 0.1 + 0.5 ⇥ (1 � 0.1) = 0.55 for Blake. They both have
near perfect outcome-graded reliance because their policy dictates following the AI
when it is correct and not when it is incorrect; note there is a non-zero probability of
each individual trivially selecting the same incorrect answer as the AI.
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Albert Einstein was a German-born theoretical physicist, widely 
acknowledged to be one of the greatest and most influential 
physicists of all time. Albert Einstein was born in Ulm, in the Kingdom 
of Württemberg in the German Empire, on 14 March 1879 into a 
family of secular Ashkenazi Jews. His parents were were Hermann 
Einstein, a salesman and engineer, and Pauline Koch. In 1880, the 
family moved to Munich, where Einstein's father and his uncle Jakob 
founded Elektrotechnische Fabrik J. Einstein & Cie, a company that 
manufactured electrical equipment based on direct current.

Factoid QA (from trusted source)

Where was Albert Einstein born?

Ulm, Germany

Sentiment Analysis
Is this movie review positive or negative?

Positive

Right from the start the special effects wowed me and I was stunned. 
The theme was engaging and I felt transported to a different world. 
Despite a few too many twists and turns, the story was ok as well — a 
bit unbelievable, but I suppose that’s Hollywood today. My biggest 
concern was character development — there really wasn’t any. The 
stars fit into standard hero roles. Furthermore, no one changed over 
the course of the film. Thus, despite the promising beginning, my final 
conclusion was one of disappointment. Taken as a whole, I felt the 
move was terrible.

Example

AI Recommendation

AI Explanation

Example

AI Recommendation

AI Explanation

(correct) (incorrect)

Inspecting highlights is conclusive. Inspecting highlights is insufficient.Verification Verification

Figure 4: The utility of an explanation is not a simple function of explanation type, as these two examples illustrate. Both use
an explanation style that highlight key spans of text, but their ability to induce complementary performance is very di�erent.
While these explanations can be useful for factoid QA from trusted sources, they are less successful for sentiment analysis [7].
The di�erence lies in whether the human can reliably verify the AI’s answer by solely inspecting the highlighted text.

(e.g., environmental, social, or societal). For example, one might
be able to correlate a criminal’s probability for recidivism with
factors such as age or gender, but there is no perfect way to predict
the future. As a result, the utility of verifying a recommendation
becomes limited by the extent of stochasticity present in a task.

In summary, the more easily an explanation enables veri�cation
of prediction correctness, the more likely it is to produce com-
plementary performance. Note that both the semantic content of
the explanation and its presentation (i.e., the user interface which
presents the explanation) a�ect the ease of human veri�cation.
However, other factors may also contribute, such as a decision
maker’s desire to engage with explanations within cognitively ef-
fortful tasks (i.e., Need For Cognition [13]) and the task’s inherent
cognitive load.

4.3 Veri�cation and Human Intuitions
Human veri�cation of an AI recommendation (with or without
an explanation) is only possible if decision maker has su�cient
task-speci�c knowledge to characterize solutions. For instance,
veri�cation of an explanation in the maze solving task requires
implicit assumptions about the human’s understanding of the task
(e.g., what constitutes a valid path through a maze).

Chen et al. [19] present a similar framework to ours, articulating
how human intuitions can interact with AI explanations to improve
decision making. They describe various examples of task-speci�c
human intuitions; for instance, in prostate cancer diagnosis, intu-
itions might refer to knowledge of the location of the prostate in a
medical image and the association between darkness and tumor. In
sentiment analysis, intuitions might refer to an understanding of
language and its in�uence on polarity. Through their theoretical
framework, they suggest human intuitions can lead to complemen-
tary performance in one of two ways: revealing signs of model
error and supporting the discovery of novel knowledge.

In line with this theory, the belief that AI explanations could
su�ciently interact with task-speci�c human intuitions to reveal
model errors and thus enable complementary performance was a
keymotivation for providing AI explanations in AI-advised decision
making. In practice, however, this type of explanation does not
appear to produce complementary performance on most tasks.

5 WHAT IS APPROPRIATE RELIANCE?
Previous sections of this paper focus on complementary perfor-
mance — an ideal team that performs better than the human or
AI alone. However, many researchers strive instead to design XAI
systems that induce appropriate reliance.

Unfortunately, “appropriate reliance” is not well-de�ned within
the XAI literature. One common characterization suggests reliance
is appropriate if the human accepts an AI recommendation when the
AI is correct, and rejects the recommendation when the AI is incor-
rect [7, 13, 73, 82, 84, 88]. Reliance is therefore inappropriate when
the human accepts the recommendation when the AI is incorrect
(over-reliance), and when the human rejects the recommendation
when the AI is correct (under-reliance). This characterization cap-
tures a notion of outcome-graded reliance (see Figure 5 left), and
is evaluable given actual decision outcomes. Unfortunately, we
suggest outcome-graded reliance is inadequate to measure the per-
ceived improvements in decision making performance. There are
two major problems with the outcome-graded de�nition:

• Post-hoc: It is impossible to know if one’s reliance is ‘appro-
priate’ until after seeing the �nal result.Was it ‘inappropriate’
to see the best doctor in the world, if one happens to get an
unlucky outcome?

• Nondeterministic: Consider two identical examples (e.g.,
bank loan applications) whose input features are exactly the
same, and suppose theAI provides the same recommendation
in both cases (e.g., unlikely to default). But suppose that one
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theory that explains under what circumstances these explanations
can in fact improve decision making performance, if at all.

3 AI-ADVISED DECISION MAKING
We restrict our analysis of AI explanation utility to the established
paradigm of AI-advised decision making [6], de�ned as follows:

(1) Given an individual instance of a task, an AI makes a recom-
mendation, and possibly provides an explanation.

(2) A human decision maker makes the �nal decision, drawing
on features of the task, an AI’s recommendation, and (if
available) its explanation (Figure 2).

Moreover, we are concerned with the e�ect of explanations on
decision making performance via objective measures of e�cacy
such as accuracy, error rate, or speed of decision-making [5].

Beyond simply improving the performance of a human-AI team,
we are interested in complementary performance, where the human-
AI system performs better (for example, its accuracy is higher or
decisions are made more cheaply) than either the human or AI
separately. While complementarity is not necessary for AI assis-
tance to be deemed “useful,” for many researchers it is the intuitive
motivation for coupling a human and AI together. Furthermore, if
the consequence of using a human-AI team lowers performance (for
whatever metric is deemed most important), we should have clear
understanding of this e�ect.

Given the focus on complementary performance, we do not at-
tempt to characterize the utility (or lack thereof) of explanations
for other possible objectives in AI-advised decision making. These
include task-centered metrics such as subjective assessments of
e�cacy (e.g., self-rated accuracy, decision con�dence) or satisfac-
tion (e.g., cognitive load, helpfulness), and AI-centered metrics such
as trust and reliance on the AI, perceptions of AI fairness, and
understanding of the AI.

Explanations are often characterized based on the scope of infor-
mation they convey about an AI model. For decision making, the
existing literature largely studies the in�uence of local explanations,
which provide information about individual AI recommendations.
These include visualizations of model uncertainty, feature impor-
tance, rule-based explanations, example-based explanations, coun-
terfactual explanations, or natural language rationale explanations.
In contrast, global explanations aim to provide holistic insight into
the entirety of an AI model, for instance by visualizing or otherwise
detailing a model’s complete architecture. Faithfulness is another
dimension used to characterize explanations. A faithful explanation
is one that accurately represents the reasoning process behind a
model’s prediction. Some intrinsically interpretable models, such as
GA2Ms [17], are favored because it is (relatively) easy for a human
to understand the model’s behavior. Other explanations are gener-
ated by post-hoc analysis, e.g. using techniques such as LIME [71]
or SHAP [58]. While these methods produce local explanations for
otherwise inscrutable models, they are by de�nition approxima-
tions or a model’s true reasoning process, and hence raise concerns
of faithfulness.

In this paper, we present a theory of veri�cation agnostic to
these particular characterizations of explanations (local vs. global,
intrinsically interpretable vs approximate post-hoc). We argue ex-
planation faithfulness is largely irrelevant; the main issue that

a�ects decision making performance is whether the explanation
helps the human verify the proposed solution.

4 VERIFIABILITY
We argue that explanations can enable complementary per-
formance in AI-advised decision making to the extent they
allow a decision maker to verify an AI’s recommendation.
Here, we refer to veri�cation of a candidate answer as the process
of determining its correctness. In the psychology literature, this
notion is also called demonstrability and has been associated with
the ability of one individual being able to convince other members
to switch to a correct answer on ‘intellective’ problems such as
math puzzles [52].

Note that some problems may not have a veri�able answer, and
many AI explanations fundamentally cannot satisfy this desidera-
tum and thus do not e�ectively support complementary decision
making. For instance, one of themost common types of explanations
is local feature importance, e.g., model coe�cients of interpretable
models or approximate post-hoc explanations. These types of expla-
nations which describe a decision-making process can either align
with human intuitions, potentially resulting in con�rmation bias,
or contradict human intuitions, in which case a decision maker
may often �nd it more convenient to explain away any di�erences.
In the best case, the AI’s explanation reveals a salient misalign-
ment between the AI’s decision making process and its expected
behavior, allowing a decision maker to disregard the AI’s recom-
mendation. While feature importance explanations may provide
some indication of how much each feature in�uenced the AI’s de-
cision, they typically do not allow a decision maker to verify the
AI’s recommendation.

4.1 Useful Explanations Allow Veri�cation
To see the importance of veri�cation, consider the task of AI-advised
maze solving (similar to the study in [82]) — the goal is to determine
whether a valid path exists between a speci�ed entrance and exit
in the maze. The AI recommends a binary decision (i.e., yes or no),
and explains its decision with a highlighted path through the maze
to the exit. Without the explanation, a human cannot verify the
AI’s recommendation short of solving the maze themselves. Thus
the human must adopt a policy of blind trust or disregard the AI’s
advice — neither of which produce complementary performance.
Given the path, however, the decision maker is able to easily verify
the AI’s recommendation, �ltering mistakes, and only expending
e�ort to solve mazes where the AI errs. If the AI is reasonably good,
this does produce complementary performance [82].

Veri�cation given AI explanations in decision making closely
resembles veri�cation of certi�cates or solutions within canonical
NP-complete computational decision problems (Figure 3). While
�nding a solution to an NP-complete problem likely takes expo-
nential time, verifying the certi�cate can be done with polynomial
computation. In both contexts, while �nding a solution is challeng-
ing (e.g., requiring an exhaustive search), checking the correctness
of an explanation enables e�cient veri�cation of the answer.

Unfortunately, our maze example is unusual — explanations in
the tasks most commonly considered in XAI studies (e.g., recidivism
prediction, medical applications, sentiment analysis, or deceptive

4

Maze and other NP-complete problems

XAI Problem

Solution

Complexity of  
Verification

Maze solving — Is there a valid path? 

Slow — exhaustive search

Fast with explanation — 
 linear in path length

NPC Problem Vertex coloring — Can the graph be 3-colored 
so no adjacent vertices share a color? 

Solution Slow — exponential search

Complexity of  
Verification

Fast with certificate —  
linear in # of edges

Figure 3: Tasks in which AI explanations have been shown to provide veri�cation of an AI recommendation (e.g., maze solving)
resemble NP-complete decision problems. Complementary performance can be achieved in these cases because the AI does the
time-consuming problem solving and the human can quickly verify the correctness of a solution. Of course, this veri�cation
process is task speci�c. Sometimes fast veri�cation is only possible for some answer types; for example, an illegal maze path
does not preclude the existence of a legal path. On average, however, these explanations speed human veri�cation [82].

review detection) do not enable veri�cation. Explanations for these
tasks typically include providing model coe�cients or key features,
which serve to elucidate the model’s decision making process rather
than enable veri�cation of a proposed decision.

For example, for a sentiment analysis task an AI model may
explain itself by highlighting spans of text which were most in�u-
ential to its decision (Figure 4 (right)). This may appear reassuring,
but can lead to a false sense of trust when the AI makes mistakes.
Indeed, user studies have shown that these explanations aren’t any
more helpful than seeing the AI’s internal con�dence [7]. A rare
exception where an AI explanation consisting of an extracted span
of text can lead to complementary performance is factoid ques-
tion answering from trusted sources (illustrated in Figure 4 (left));
such a span, even in isolation, does allow veri�cation of answer
correctness.

4.2 A Spectrum of Veri�cation
Whether an explanation a�ords veri�cation of a recommendation
is usually not an all or nothing proposition, but rather a point along
a spectrum. Characteristics of the human decision maker, the deci-
sion making task, and the AI explanation may in�uence where an
explanation lies along this spectrum— hence, determining its utility.
On one extreme are contexts that a�ord no veri�cation whatsoever,
such as problems where the actual outcomes are independent from
the problem features, or where all errors made by the AI assistance
are random rather than systematic. The other end of the spectrum
includes intractable but easily veri�able problems (e.g., the maze
solving task, NP-complete decision problems). But even the maze
task a�ords only one-sided veri�ability: an explanation depicting
an illegal path doesn’t imply that no solution exists.

Explanations do not need to provide complete veri�cation of an
AI recommendation. Rather, by su�ciently lowering the cost of
veri�cation, explanations can provide enough utility to improve
team performance [82]. Consider a variant of the maze solving
task where the AI provides an explanation which highlights 90% of
the path to the exit rather than the complete path. We argue this
explanation may reduce the human’s cognitive cost of verifying
the AI enough to yield complementary performance.

Another variation of the maze problem likely leads to a di�erent
result. Suppose the question is not just path existence, but opti-
mality. Speci�cally, consider the following variation on the maze
task: given a maze with a start and three alternative exits, which
of the exits can be reached with the shortest valid path from the
start? The AI recommends a single exit and explains by drawing a
path from the start to its speci�ed exit. We conjecture the following
hypotheses: 1) this explanation will not lead to complementary
performance for this task, since it doesn’t signi�cantly reduce the
cost of verifying the AI’s recommendation. However, 2) if the expla-
nation consisted of the shortest valid paths to all three exits, then
this would yield complementary performance.

With feature-based explanations on real-world decision-making
tasks, positive veri�cation is rarely possible. Instead, explanations
may be better suited to convey a fatal �aw in the AI’s decision mak-
ing process. For example, if an AI trained to classify lung cancer
from CT images justi�es its diagnosis by highlighting an artifact
outside the lung, that should raise concern [17]. Some studies have
shown that explanations can reveal model error to yield complemen-
tary decision making performance (in particular, when the revealed
errors are su�ciently egregious to indicate strong signals of model
unreliability) [21, 78]. However, across most decision making con-
texts, we believe there are two reasons why such explanations
frequently fail to produce complementary performance:

(1) Plausible but wrong: The AI may make a bad decision for
a credible reason (e.g., Figure 4 right). Hence, explanations
which clearly reveal model error to the human are rare.

(2) Right for the wrong reason: The AI’s recommendation
may still be right, even when its explanation is wrong. In this
case, the human may incorrectly reject the correct answer.
However, even if the human escapes that pitfall, they still
need to solve the problem from scratch, and no time is saved.

Many real-world decision making tasks, such as those involv-
ing inferences over human action, can further exhibit aleatoric
uncertainty, arising from the inherent stochastic nature of the de-
pendency between the observed instance features and the actual
decision outcome. In these cases, a correct decision is not entirely
determined by features evident to the human or the AI model, but
is also in�uenced by irreducible uncertainty within latent factors
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Paper Decision Making Task Explanations Enables
Veri�cation

Complementary
Performance

Biran and McKeown [10] Stock price prediction Rationale 7 7
Green and Chen [33] Pretrial detention Feature importance 7 7
Green and Chen [33] Financial lending Feature importance 7 7
Weerts et al. [85] Income prediction Feature importance 7 7
Lai and Tan [50] Deceptive review Feature importance (text highlights) 7 7
Lai et al. [49] Deceptive review Feature importance (text highlights) 7 7
Buçinca et al. [12] Food fat content prediction Feature importance 7 7
Carton et al. [16] Toxicity detection Feature importance (text highlights) 7 7
Zhang et al. [91] Income prediction Feature importance 7 7
Liu et al. [56] Recidivism prediction Feature importance 7 7
Alufaisan et al. [4] Income prediction Feature importance 7 7
Alufaisan et al. [4] Recidivism prediction Feature importance 7 7
Wang and Yin [84] Recidivism prediction Feature importance 7 7
Wang and Yin [84] Forest cover prediction Feature importance 7 7
Nourani et al. [66] Kitchen policy veri�cation Feature importance 7 7
Poursabzi-Sangdeh et al. [69] Apartment price prediction Feature importance 7 7
Jesus et al. [41] Fraud detection Feature importance (text highlights) 7 7
Nguyen et al. [65] Image classi�cation Attribution maps 7 7
Kim et al. [46] Image classi�cation Attribution maps & Prototype-based 7 7
Parrish et al. [68] Long document MCQA Rationale 7 7
Sivaraman et al. [75] Sepsis treatment Feature importance 7 7

Bansal et al. [7] Sentiment classi�cation Feature importance (text highlights) 7 ¢
Bansal et al. [7] Logical reasoning Rationale 7 ¢
Taesiri et al. [78] Image classi�cation Nearest neighbors 7 ¢
Feng and Boyd-Graber [27] Quizbowl trivia QA Rationale 3 3
González et al. [32] Wikipedia ODQA Rationale 3 3
Vasconcelos et al. [82] Maze solving Path highlights 3 3
Lee et al. [55] Multitask MCQA Rationale (interactive) 3 3
Bowman et al. [11] Long form MCQA Rationale (interactive) 3 3

Table 1: Recent studies investigating the e�ect of AI explanations on task performance in AI-advised decisionmaking. Common
explanation types include descriptions of feature importance (over both tabular and textual features) and natural language
rationales. Most of these explanations describe the AI’s decision-making process rather than help a human decision maker
verify the AI’s recommendation. But only the latter engender complementary performance (3), where team performance exceeds
that of the human or AI alone. Sometimes explanations which do not enable veri�cation may appear to yield complementary
performance (¢); however, in these cases, it is unclear whether explanations actually o�er utility as providing only AI recom-
mendations and con�dence scores (without the explanations) also resulted in complementary performance.

we propose two alternative terms: outcome-graded reliance and
strategy-graded reliance to tease these apart. Section 6 places our
conjecture in a broader context, and Section 7 concludes.

2 BACKGROUND
Providing interpretability for AI models, for instance through expla-
nations, has been one way researchers have attempted to facilitate
more informed and accurate decision making [9]. One set of studies
have found AI explanations can improve human-AI performance
over human decision making alone and over human-AI teams with
AI recommendations without explanations [10, 12, 13, 26, 38, 49, 50].
However, none of these studies found explanations could improve
human-AI performance beyond the original capabilities of the AI
model. The studies also involved collaborations in which the AI
model signi�cantly outperformed the human decision maker. It is
therefore unclear whether explanations truly improved the human-
AI decision making process, or if explanations convinced humans
to blindly trust the AI’s recommendations. In this type of scenario

— where the AI performs at a superhuman level — should we sim-
ply allow the AI to operate independently? It is arguably naive to
believe the human is performing any meaningful oversight, when
the e�ect of explanations is inducing blind trust.

In response, researchers have investigated how explanations
might support decision makers in developing appropriate reliance
on AI assistance, rather than improving performance through blind
trust. While appropriate reliance is not well-de�ned in the liter-
ature (as explained in §5), one common de�nition states that ap-
propriate reliance is achieved when decision makers agree with
the AI when its recommendation is correct, and disagree with the
AI when its recommendation is incorrect. Unfortunately, achiev-
ing this notion of appropriate reliance through explanations has
been elusive [3, 7, 16, 18, 33, 39, 41, 44, 56, 66, 68, 69, 75, 85, 91].
Fundamentally, it can be hard for people to know how much to
trust recommendations [12, 30, 40, 75]. And though AI explana-
tions were hypothesized to make the AI’s decision making process
more interpretable and in turn support appropriate reliance, most
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ABSTRACT
The current literature on AI-advised decision making — involving
explainable AI systems advising human decision makers — presents
a series of inconclusive and confounding results. To synthesize these
�ndings, we propose a simple theory that elucidates the frequent
failure of AI explanations to engender appropriate reliance and
complementary decision making performance. In contrast to other
common desiderata, e.g., interpretability or spelling out the AI’s rea-
soning process, we argue explanations are only useful to the extent
that they allow a human decision maker to verify the correctness of
the AI’s prediction. Prior studies �nd in many decision making con-
texts AI explanations do not facilitate such veri�cation. Moreover,
most tasks fundamentally do not allow easy veri�cation, regardless
of explanation method, limiting the potential bene�t of any type of
explanation. We also compare the objective of complementary per-
formance with that of appropriate reliance, decomposing the latter
into the notions of outcome-graded and strategy-graded reliance.

1 INTRODUCTION
Recent years have seen an explosion of work on explainable AI
(XAI), but there have been mixed results on whether explanations
actually help humans who are making decisions with AI support.
In this decision making context, the role of explanations is to foster
appropriate reliance by helping the human understand whether
or not the AI’s advice should be trusted. Appropriate reliance is
desired in order to achieve complementary performance, where
the human-AI team performs better than either the human or AI
alone [7]. But here we see a confusing montage of results: not
only do most papers �nd explanations don’t induce complementary
performance more than baseline methods, such as displaying AI
accuracy or con�dence, but these papers suggest explanations can
in fact increase over-reliance, where the human trusts the AI even
when it errs. The inconclusive nature of these results raises a huge
question for the �eld of XAI: when are explanations useful?

We focus solely on the process of AI-advised decision making,
de�ned as the following: given an instance of a decision making
task, an AI makes a recommendation, and drawing on features of
the task, the AI’s recommendation, and possibly an explanation
for the AI’s recommendation, a human decision maker arrives at
a �nal decision (Figure 1). There are many other possible uses for
AI explanations [47, 79], including model debugging and auditing,
e.g., to help the human understand whether the AI’s reasoning will
generalize, but our arguments pertain only to decision making.

In this paper, we present a perspective we believe explains the
seemingly mixed empirical results found throughout the XAI liter-
ature. Furthermore, our proposal is consistent with the way human

Decision Novel intuitions Assessment

Human

AI

Update

Model AuditKnowledge Discovery

Model Development

Decision Making

Recommendation

Explanation
+

Figure 1: Researchers suggest that AI explanations could aid
numerous human-AI processes, including decision making,
model development, knowledge discovery, and model audit.
In this paper, we focus solely on understanding whether ex-
planations are helpful in the context of AI-advised decision
making. We claim AI explanations cannot foster appropri-
ate reliance and engender complementary performance in
decision making, except in the rare instances in which they
e�ciently verify the AI’s recommendation.

groups reach consensus on “intellective” tasks [52]. We argue ex-
planations provided by an AI model are helpful in decision
making (engender complementary performance [7]) to the
extent they allow a decision maker to verify the AI’s recom-
mendation.While this theory may appear self-evident,

(1) Most work on XAI has focused instead on creating inher-
ently interpretable models or generating faithful post-hoc
explanations of the AI’s reasoning process.

(2) Most of these explanations do not support such veri�cation.
Explanations which faithfully expose the AI’s reasoning process
may well be useful for debugging the AI or predicting its ability
to generalize, but it does not seem to help human decision mak-
ers make judgements on individual task instances. Indeed, most
human-subject studies have shown that explanations fail to produce
complementary performance in decision making; the sole excep-
tions are explanations that support answer veri�cation (Table 1).

The rest of this paper is structured as follows. The next section
surveys the con�icting results from prior studies on XAI utility.
Section 3 details the decision making context, which is our focus in
this paper. Section 4 presents our core argument — explanations
must facilitate veri�cation in order to engender complementary
performance. Section 5 discusses the concept of appropriate reliance,
arguing this term has become overloaded, leading to confusion;

Abstracts Papers

~150 words ~10,000 words 

What’s complementary 
performance?..



Bridging the information chasm

Strategy-Graded Reliance

Expected to  
Underperform Human

Expected to 
Underperform Human

Human Decision Maker

AI Adviser

Accept AI Rec.Reject AI Rec.

Outcome-Graded Reliance

Correct

Incorrect

Human Decision Maker

Accept AI Rec.Reject AI Rec.

Under-reliance

Over-reliance

Appropriate 
Outcome-Graded 

Reliance

Appropriate 
Outcome-Graded 

Reliance

Under-reliance

Over-reliance

Appropriate 
Strategy-Graded 

Reliance

Appropriate 
Strategy-Graded 

Reliance

AI Adviser

Figure 5: We propose a clari�cation of two notions of reliance behavior commonly con�ated in the literature. Outcome-graded
reliance is appropriate if the human decision maker accepts an AI recommendation when it is correct and rejects it otherwise;
note that this de�nition is conditioned on the post-hoc correctness of the AI. We argue this de�nition is problematic given its
outcome-dependent and nondeterministic nature. In contrast, strategy-graded reliance is behavior that defers to the AI when
its expected performance is superior to the human’s expected performance.

borrower ends up defaulting, while the other repays the
loan. The de�nition says it is ‘appropriate’ to rely on the AI’s
advice on one case but not on the other — even though they
are indistinguishable!

Instead, consider an alternative de�nition, strategy-graded re-
liance, where reliance is appropriate if the human accepts an AI
recommendation when the AI is expected to outperform the human,
and rejects otherwise (see Figure 5 right). Unlike outcome-graded
reliance, strategy-graded reliance is neither post-hoc nor nonde-
terministic; it considers the appropriateness of reliance given the
expected relative performance of the human and the AI. The opti-
mal strategy is to rely on the party most likely to have the correct
answer. A key question here is “Upon what information is that
expectation computed?” There are several possibilities.

• Past performance: If past experience shows the AI is more
likely to be correct than the human, it might be appropriate
to defer to the AI even without information about this par-
ticular decision instance. Note this policy cannot produce
complementary performance.

• Previous characteristics + instance features: Conditioning
on the current instance (i.e., speci�c details of the task at
hand) can lead to complementary performance. For example,
if a driver knew her auto-drive car was less prone to accidents
when on the freeway, she might con�dently take her hands
o� thewheel in that situation— even if she knew that shewas
the better driver onwinding country roads.When automated,
this type of conditioning resembles a human-AI delegation
work�ow (discussed at the end of §6.2).

• Previous characteristics + the AI’s recommendation: Con-
ditioning on the AI’s recommendation allows the human to
adopt a policy of the form “I know the AI is conservative and
very unlikely to err with a false positive, so I will accept pos-
itive recommendations and only scrutinize instances when
the AI o�ers a negative recommendation.”

• Previous characteristics + the AI’s explanation: In this pa-
per, we have argued this condition rarely improves upon the

previous strategy, and only when the explanation supports
veri�cation.

In contrast to complementary performance, which refers to the
team’s measured performance, both notions of reliance de�ne an
attribute of the human’s behavior relative to the AI. Furthermore,
while a policy of strategy-guided reliance will hopefully lead to
complementary performance, it’s not guaranteed to do so. In partic-
ular, if the human’s estimates of their relative accuracy (compared
to the AI) are poor, team performance may drop.

We believe the strategy-graded de�nition of reliance is the bet-
ter objective. To illustrate the shortcomings of outcome-graded
reliance, consider a decision making task in which the human is
historically 60% accurate, while the AI is 99.999% accurate. On any
given instance of the task, if the human is uncertain of the answer, is
it appropriate to rely on the AI’s recommendation? Intuitively, the
answer seems a clear ‘yes’. But if the AI is later found incorrect, the
outcome-graded de�nition says “Inappropriate,” while the strategy-
graded de�nition matches intuition and says “Appropriate.”

Outcome-graded reliance is similar to complementary perfor-
mance in that both qualities can only be measured post hoc. How-
ever, there are subtle di�erences between these notions, beyond
the fact that one measures a pattern of human behavior and the
other the performance of a human-AI team. For example, imagine
a AI-assisted image classi�cation task with 1000 potential classes.
Suppose two individuals, Avery and Blake, are 80% and 50% accurate
at the task alone, respectively, and the AI is 10% accurate. Luckily,
the AI outputs veri�able explanations, so both Avery and Blake
can perfectly tell when the AI is correct. Both follow a policy of ac-
cepting the AI’s recommendation when it is correct, and otherwise
solving the problem themselves. According to the de�nition, both
Avery and Blake have (near) perfect outcome-graded reliance, but
their strategies lead to very di�erent expected team performance:
82% for Avery and 55% for Blake.1

1Expected accuracy can be calculated as ⇢ [022�E4A~ ] = 0.1 + 0.8 ⇥ (1 � 0.1) = 0.82
for Avery and ⇢ [022⌫;0:4 ] = 0.1 + 0.5 ⇥ (1 � 0.1) = 0.55 for Blake. They both have
near perfect outcome-graded reliance because their policy dictates following the AI
when it is correct and not when it is incorrect; note there is a non-zero probability of
each individual trivially selecting the same incorrect answer as the AI.
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Albert Einstein was a German-born theoretical physicist, widely 
acknowledged to be one of the greatest and most influential 
physicists of all time. Albert Einstein was born in Ulm, in the Kingdom 
of Württemberg in the German Empire, on 14 March 1879 into a 
family of secular Ashkenazi Jews. His parents were were Hermann 
Einstein, a salesman and engineer, and Pauline Koch. In 1880, the 
family moved to Munich, where Einstein's father and his uncle Jakob 
founded Elektrotechnische Fabrik J. Einstein & Cie, a company that 
manufactured electrical equipment based on direct current.

Factoid QA (from trusted source)

Where was Albert Einstein born?

Ulm, Germany

Sentiment Analysis
Is this movie review positive or negative?

Positive

Right from the start the special effects wowed me and I was stunned. 
The theme was engaging and I felt transported to a different world. 
Despite a few too many twists and turns, the story was ok as well — a 
bit unbelievable, but I suppose that’s Hollywood today. My biggest 
concern was character development — there really wasn’t any. The 
stars fit into standard hero roles. Furthermore, no one changed over 
the course of the film. Thus, despite the promising beginning, my final 
conclusion was one of disappointment. Taken as a whole, I felt the 
move was terrible.

Example

AI Recommendation

AI Explanation

Example

AI Recommendation

AI Explanation

(correct) (incorrect)

Inspecting highlights is conclusive. Inspecting highlights is insufficient.Verification Verification

Figure 4: The utility of an explanation is not a simple function of explanation type, as these two examples illustrate. Both use
an explanation style that highlight key spans of text, but their ability to induce complementary performance is very di�erent.
While these explanations can be useful for factoid QA from trusted sources, they are less successful for sentiment analysis [7].
The di�erence lies in whether the human can reliably verify the AI’s answer by solely inspecting the highlighted text.

(e.g., environmental, social, or societal). For example, one might
be able to correlate a criminal’s probability for recidivism with
factors such as age or gender, but there is no perfect way to predict
the future. As a result, the utility of verifying a recommendation
becomes limited by the extent of stochasticity present in a task.

In summary, the more easily an explanation enables veri�cation
of prediction correctness, the more likely it is to produce com-
plementary performance. Note that both the semantic content of
the explanation and its presentation (i.e., the user interface which
presents the explanation) a�ect the ease of human veri�cation.
However, other factors may also contribute, such as a decision
maker’s desire to engage with explanations within cognitively ef-
fortful tasks (i.e., Need For Cognition [13]) and the task’s inherent
cognitive load.

4.3 Veri�cation and Human Intuitions
Human veri�cation of an AI recommendation (with or without
an explanation) is only possible if decision maker has su�cient
task-speci�c knowledge to characterize solutions. For instance,
veri�cation of an explanation in the maze solving task requires
implicit assumptions about the human’s understanding of the task
(e.g., what constitutes a valid path through a maze).

Chen et al. [19] present a similar framework to ours, articulating
how human intuitions can interact with AI explanations to improve
decision making. They describe various examples of task-speci�c
human intuitions; for instance, in prostate cancer diagnosis, intu-
itions might refer to knowledge of the location of the prostate in a
medical image and the association between darkness and tumor. In
sentiment analysis, intuitions might refer to an understanding of
language and its in�uence on polarity. Through their theoretical
framework, they suggest human intuitions can lead to complemen-
tary performance in one of two ways: revealing signs of model
error and supporting the discovery of novel knowledge.

In line with this theory, the belief that AI explanations could
su�ciently interact with task-speci�c human intuitions to reveal
model errors and thus enable complementary performance was a
keymotivation for providing AI explanations in AI-advised decision
making. In practice, however, this type of explanation does not
appear to produce complementary performance on most tasks.

5 WHAT IS APPROPRIATE RELIANCE?
Previous sections of this paper focus on complementary perfor-
mance — an ideal team that performs better than the human or
AI alone. However, many researchers strive instead to design XAI
systems that induce appropriate reliance.

Unfortunately, “appropriate reliance” is not well-de�ned within
the XAI literature. One common characterization suggests reliance
is appropriate if the human accepts an AI recommendation when the
AI is correct, and rejects the recommendation when the AI is incor-
rect [7, 13, 73, 82, 84, 88]. Reliance is therefore inappropriate when
the human accepts the recommendation when the AI is incorrect
(over-reliance), and when the human rejects the recommendation
when the AI is correct (under-reliance). This characterization cap-
tures a notion of outcome-graded reliance (see Figure 5 left), and
is evaluable given actual decision outcomes. Unfortunately, we
suggest outcome-graded reliance is inadequate to measure the per-
ceived improvements in decision making performance. There are
two major problems with the outcome-graded de�nition:

• Post-hoc: It is impossible to know if one’s reliance is ‘appro-
priate’ until after seeing the �nal result.Was it ‘inappropriate’
to see the best doctor in the world, if one happens to get an
unlucky outcome?

• Nondeterministic: Consider two identical examples (e.g.,
bank loan applications) whose input features are exactly the
same, and suppose theAI provides the same recommendation
in both cases (e.g., unlikely to default). But suppose that one
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theory that explains under what circumstances these explanations
can in fact improve decision making performance, if at all.

3 AI-ADVISED DECISION MAKING
We restrict our analysis of AI explanation utility to the established
paradigm of AI-advised decision making [6], de�ned as follows:

(1) Given an individual instance of a task, an AI makes a recom-
mendation, and possibly provides an explanation.

(2) A human decision maker makes the �nal decision, drawing
on features of the task, an AI’s recommendation, and (if
available) its explanation (Figure 2).

Moreover, we are concerned with the e�ect of explanations on
decision making performance via objective measures of e�cacy
such as accuracy, error rate, or speed of decision-making [5].

Beyond simply improving the performance of a human-AI team,
we are interested in complementary performance, where the human-
AI system performs better (for example, its accuracy is higher or
decisions are made more cheaply) than either the human or AI
separately. While complementarity is not necessary for AI assis-
tance to be deemed “useful,” for many researchers it is the intuitive
motivation for coupling a human and AI together. Furthermore, if
the consequence of using a human-AI team lowers performance (for
whatever metric is deemed most important), we should have clear
understanding of this e�ect.

Given the focus on complementary performance, we do not at-
tempt to characterize the utility (or lack thereof) of explanations
for other possible objectives in AI-advised decision making. These
include task-centered metrics such as subjective assessments of
e�cacy (e.g., self-rated accuracy, decision con�dence) or satisfac-
tion (e.g., cognitive load, helpfulness), and AI-centered metrics such
as trust and reliance on the AI, perceptions of AI fairness, and
understanding of the AI.

Explanations are often characterized based on the scope of infor-
mation they convey about an AI model. For decision making, the
existing literature largely studies the in�uence of local explanations,
which provide information about individual AI recommendations.
These include visualizations of model uncertainty, feature impor-
tance, rule-based explanations, example-based explanations, coun-
terfactual explanations, or natural language rationale explanations.
In contrast, global explanations aim to provide holistic insight into
the entirety of an AI model, for instance by visualizing or otherwise
detailing a model’s complete architecture. Faithfulness is another
dimension used to characterize explanations. A faithful explanation
is one that accurately represents the reasoning process behind a
model’s prediction. Some intrinsically interpretable models, such as
GA2Ms [17], are favored because it is (relatively) easy for a human
to understand the model’s behavior. Other explanations are gener-
ated by post-hoc analysis, e.g. using techniques such as LIME [71]
or SHAP [58]. While these methods produce local explanations for
otherwise inscrutable models, they are by de�nition approxima-
tions or a model’s true reasoning process, and hence raise concerns
of faithfulness.

In this paper, we present a theory of veri�cation agnostic to
these particular characterizations of explanations (local vs. global,
intrinsically interpretable vs approximate post-hoc). We argue ex-
planation faithfulness is largely irrelevant; the main issue that

a�ects decision making performance is whether the explanation
helps the human verify the proposed solution.

4 VERIFIABILITY
We argue that explanations can enable complementary per-
formance in AI-advised decision making to the extent they
allow a decision maker to verify an AI’s recommendation.
Here, we refer to veri�cation of a candidate answer as the process
of determining its correctness. In the psychology literature, this
notion is also called demonstrability and has been associated with
the ability of one individual being able to convince other members
to switch to a correct answer on ‘intellective’ problems such as
math puzzles [52].

Note that some problems may not have a veri�able answer, and
many AI explanations fundamentally cannot satisfy this desidera-
tum and thus do not e�ectively support complementary decision
making. For instance, one of themost common types of explanations
is local feature importance, e.g., model coe�cients of interpretable
models or approximate post-hoc explanations. These types of expla-
nations which describe a decision-making process can either align
with human intuitions, potentially resulting in con�rmation bias,
or contradict human intuitions, in which case a decision maker
may often �nd it more convenient to explain away any di�erences.
In the best case, the AI’s explanation reveals a salient misalign-
ment between the AI’s decision making process and its expected
behavior, allowing a decision maker to disregard the AI’s recom-
mendation. While feature importance explanations may provide
some indication of how much each feature in�uenced the AI’s de-
cision, they typically do not allow a decision maker to verify the
AI’s recommendation.

4.1 Useful Explanations Allow Veri�cation
To see the importance of veri�cation, consider the task of AI-advised
maze solving (similar to the study in [82]) — the goal is to determine
whether a valid path exists between a speci�ed entrance and exit
in the maze. The AI recommends a binary decision (i.e., yes or no),
and explains its decision with a highlighted path through the maze
to the exit. Without the explanation, a human cannot verify the
AI’s recommendation short of solving the maze themselves. Thus
the human must adopt a policy of blind trust or disregard the AI’s
advice — neither of which produce complementary performance.
Given the path, however, the decision maker is able to easily verify
the AI’s recommendation, �ltering mistakes, and only expending
e�ort to solve mazes where the AI errs. If the AI is reasonably good,
this does produce complementary performance [82].

Veri�cation given AI explanations in decision making closely
resembles veri�cation of certi�cates or solutions within canonical
NP-complete computational decision problems (Figure 3). While
�nding a solution to an NP-complete problem likely takes expo-
nential time, verifying the certi�cate can be done with polynomial
computation. In both contexts, while �nding a solution is challeng-
ing (e.g., requiring an exhaustive search), checking the correctness
of an explanation enables e�cient veri�cation of the answer.

Unfortunately, our maze example is unusual — explanations in
the tasks most commonly considered in XAI studies (e.g., recidivism
prediction, medical applications, sentiment analysis, or deceptive
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Maze and other NP-complete problems

XAI Problem

Solution

Complexity of  
Verification

Maze solving — Is there a valid path? 

Slow — exhaustive search

Fast with explanation — 
 linear in path length

NPC Problem Vertex coloring — Can the graph be 3-colored 
so no adjacent vertices share a color? 

Solution Slow — exponential search

Complexity of  
Verification

Fast with certificate —  
linear in # of edges

Figure 3: Tasks in which AI explanations have been shown to provide veri�cation of an AI recommendation (e.g., maze solving)
resemble NP-complete decision problems. Complementary performance can be achieved in these cases because the AI does the
time-consuming problem solving and the human can quickly verify the correctness of a solution. Of course, this veri�cation
process is task speci�c. Sometimes fast veri�cation is only possible for some answer types; for example, an illegal maze path
does not preclude the existence of a legal path. On average, however, these explanations speed human veri�cation [82].

review detection) do not enable veri�cation. Explanations for these
tasks typically include providing model coe�cients or key features,
which serve to elucidate the model’s decision making process rather
than enable veri�cation of a proposed decision.

For example, for a sentiment analysis task an AI model may
explain itself by highlighting spans of text which were most in�u-
ential to its decision (Figure 4 (right)). This may appear reassuring,
but can lead to a false sense of trust when the AI makes mistakes.
Indeed, user studies have shown that these explanations aren’t any
more helpful than seeing the AI’s internal con�dence [7]. A rare
exception where an AI explanation consisting of an extracted span
of text can lead to complementary performance is factoid ques-
tion answering from trusted sources (illustrated in Figure 4 (left));
such a span, even in isolation, does allow veri�cation of answer
correctness.

4.2 A Spectrum of Veri�cation
Whether an explanation a�ords veri�cation of a recommendation
is usually not an all or nothing proposition, but rather a point along
a spectrum. Characteristics of the human decision maker, the deci-
sion making task, and the AI explanation may in�uence where an
explanation lies along this spectrum— hence, determining its utility.
On one extreme are contexts that a�ord no veri�cation whatsoever,
such as problems where the actual outcomes are independent from
the problem features, or where all errors made by the AI assistance
are random rather than systematic. The other end of the spectrum
includes intractable but easily veri�able problems (e.g., the maze
solving task, NP-complete decision problems). But even the maze
task a�ords only one-sided veri�ability: an explanation depicting
an illegal path doesn’t imply that no solution exists.

Explanations do not need to provide complete veri�cation of an
AI recommendation. Rather, by su�ciently lowering the cost of
veri�cation, explanations can provide enough utility to improve
team performance [82]. Consider a variant of the maze solving
task where the AI provides an explanation which highlights 90% of
the path to the exit rather than the complete path. We argue this
explanation may reduce the human’s cognitive cost of verifying
the AI enough to yield complementary performance.

Another variation of the maze problem likely leads to a di�erent
result. Suppose the question is not just path existence, but opti-
mality. Speci�cally, consider the following variation on the maze
task: given a maze with a start and three alternative exits, which
of the exits can be reached with the shortest valid path from the
start? The AI recommends a single exit and explains by drawing a
path from the start to its speci�ed exit. We conjecture the following
hypotheses: 1) this explanation will not lead to complementary
performance for this task, since it doesn’t signi�cantly reduce the
cost of verifying the AI’s recommendation. However, 2) if the expla-
nation consisted of the shortest valid paths to all three exits, then
this would yield complementary performance.

With feature-based explanations on real-world decision-making
tasks, positive veri�cation is rarely possible. Instead, explanations
may be better suited to convey a fatal �aw in the AI’s decision mak-
ing process. For example, if an AI trained to classify lung cancer
from CT images justi�es its diagnosis by highlighting an artifact
outside the lung, that should raise concern [17]. Some studies have
shown that explanations can reveal model error to yield complemen-
tary decision making performance (in particular, when the revealed
errors are su�ciently egregious to indicate strong signals of model
unreliability) [21, 78]. However, across most decision making con-
texts, we believe there are two reasons why such explanations
frequently fail to produce complementary performance:

(1) Plausible but wrong: The AI may make a bad decision for
a credible reason (e.g., Figure 4 right). Hence, explanations
which clearly reveal model error to the human are rare.

(2) Right for the wrong reason: The AI’s recommendation
may still be right, even when its explanation is wrong. In this
case, the human may incorrectly reject the correct answer.
However, even if the human escapes that pitfall, they still
need to solve the problem from scratch, and no time is saved.

Many real-world decision making tasks, such as those involv-
ing inferences over human action, can further exhibit aleatoric
uncertainty, arising from the inherent stochastic nature of the de-
pendency between the observed instance features and the actual
decision outcome. In these cases, a correct decision is not entirely
determined by features evident to the human or the AI model, but
is also in�uenced by irreducible uncertainty within latent factors
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Paper Decision Making Task Explanations Enables
Veri�cation

Complementary
Performance

Biran and McKeown [10] Stock price prediction Rationale 7 7
Green and Chen [33] Pretrial detention Feature importance 7 7
Green and Chen [33] Financial lending Feature importance 7 7
Weerts et al. [85] Income prediction Feature importance 7 7
Lai and Tan [50] Deceptive review Feature importance (text highlights) 7 7
Lai et al. [49] Deceptive review Feature importance (text highlights) 7 7
Buçinca et al. [12] Food fat content prediction Feature importance 7 7
Carton et al. [16] Toxicity detection Feature importance (text highlights) 7 7
Zhang et al. [91] Income prediction Feature importance 7 7
Liu et al. [56] Recidivism prediction Feature importance 7 7
Alufaisan et al. [4] Income prediction Feature importance 7 7
Alufaisan et al. [4] Recidivism prediction Feature importance 7 7
Wang and Yin [84] Recidivism prediction Feature importance 7 7
Wang and Yin [84] Forest cover prediction Feature importance 7 7
Nourani et al. [66] Kitchen policy veri�cation Feature importance 7 7
Poursabzi-Sangdeh et al. [69] Apartment price prediction Feature importance 7 7
Jesus et al. [41] Fraud detection Feature importance (text highlights) 7 7
Nguyen et al. [65] Image classi�cation Attribution maps 7 7
Kim et al. [46] Image classi�cation Attribution maps & Prototype-based 7 7
Parrish et al. [68] Long document MCQA Rationale 7 7
Sivaraman et al. [75] Sepsis treatment Feature importance 7 7

Bansal et al. [7] Sentiment classi�cation Feature importance (text highlights) 7 ¢
Bansal et al. [7] Logical reasoning Rationale 7 ¢
Taesiri et al. [78] Image classi�cation Nearest neighbors 7 ¢
Feng and Boyd-Graber [27] Quizbowl trivia QA Rationale 3 3
González et al. [32] Wikipedia ODQA Rationale 3 3
Vasconcelos et al. [82] Maze solving Path highlights 3 3
Lee et al. [55] Multitask MCQA Rationale (interactive) 3 3
Bowman et al. [11] Long form MCQA Rationale (interactive) 3 3

Table 1: Recent studies investigating the e�ect of AI explanations on task performance in AI-advised decisionmaking. Common
explanation types include descriptions of feature importance (over both tabular and textual features) and natural language
rationales. Most of these explanations describe the AI’s decision-making process rather than help a human decision maker
verify the AI’s recommendation. But only the latter engender complementary performance (3), where team performance exceeds
that of the human or AI alone. Sometimes explanations which do not enable veri�cation may appear to yield complementary
performance (¢); however, in these cases, it is unclear whether explanations actually o�er utility as providing only AI recom-
mendations and con�dence scores (without the explanations) also resulted in complementary performance.

we propose two alternative terms: outcome-graded reliance and
strategy-graded reliance to tease these apart. Section 6 places our
conjecture in a broader context, and Section 7 concludes.

2 BACKGROUND
Providing interpretability for AI models, for instance through expla-
nations, has been one way researchers have attempted to facilitate
more informed and accurate decision making [9]. One set of studies
have found AI explanations can improve human-AI performance
over human decision making alone and over human-AI teams with
AI recommendations without explanations [10, 12, 13, 26, 38, 49, 50].
However, none of these studies found explanations could improve
human-AI performance beyond the original capabilities of the AI
model. The studies also involved collaborations in which the AI
model signi�cantly outperformed the human decision maker. It is
therefore unclear whether explanations truly improved the human-
AI decision making process, or if explanations convinced humans
to blindly trust the AI’s recommendations. In this type of scenario

— where the AI performs at a superhuman level — should we sim-
ply allow the AI to operate independently? It is arguably naive to
believe the human is performing any meaningful oversight, when
the e�ect of explanations is inducing blind trust.

In response, researchers have investigated how explanations
might support decision makers in developing appropriate reliance
on AI assistance, rather than improving performance through blind
trust. While appropriate reliance is not well-de�ned in the liter-
ature (as explained in §5), one common de�nition states that ap-
propriate reliance is achieved when decision makers agree with
the AI when its recommendation is correct, and disagree with the
AI when its recommendation is incorrect. Unfortunately, achiev-
ing this notion of appropriate reliance through explanations has
been elusive [3, 7, 16, 18, 33, 39, 41, 44, 56, 66, 68, 69, 75, 85, 91].
Fundamentally, it can be hard for people to know how much to
trust recommendations [12, 30, 40, 75]. And though AI explana-
tions were hypothesized to make the AI’s decision making process
more interpretable and in turn support appropriate reliance, most
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ABSTRACT
The current literature on AI-advised decision making — involving
explainable AI systems advising human decision makers — presents
a series of inconclusive and confounding results. To synthesize these
�ndings, we propose a simple theory that elucidates the frequent
failure of AI explanations to engender appropriate reliance and
complementary decision making performance. In contrast to other
common desiderata, e.g., interpretability or spelling out the AI’s rea-
soning process, we argue explanations are only useful to the extent
that they allow a human decision maker to verify the correctness of
the AI’s prediction. Prior studies �nd in many decision making con-
texts AI explanations do not facilitate such veri�cation. Moreover,
most tasks fundamentally do not allow easy veri�cation, regardless
of explanation method, limiting the potential bene�t of any type of
explanation. We also compare the objective of complementary per-
formance with that of appropriate reliance, decomposing the latter
into the notions of outcome-graded and strategy-graded reliance.

1 INTRODUCTION
Recent years have seen an explosion of work on explainable AI
(XAI), but there have been mixed results on whether explanations
actually help humans who are making decisions with AI support.
In this decision making context, the role of explanations is to foster
appropriate reliance by helping the human understand whether
or not the AI’s advice should be trusted. Appropriate reliance is
desired in order to achieve complementary performance, where
the human-AI team performs better than either the human or AI
alone [7]. But here we see a confusing montage of results: not
only do most papers �nd explanations don’t induce complementary
performance more than baseline methods, such as displaying AI
accuracy or con�dence, but these papers suggest explanations can
in fact increase over-reliance, where the human trusts the AI even
when it errs. The inconclusive nature of these results raises a huge
question for the �eld of XAI: when are explanations useful?

We focus solely on the process of AI-advised decision making,
de�ned as the following: given an instance of a decision making
task, an AI makes a recommendation, and drawing on features of
the task, the AI’s recommendation, and possibly an explanation
for the AI’s recommendation, a human decision maker arrives at
a �nal decision (Figure 1). There are many other possible uses for
AI explanations [47, 79], including model debugging and auditing,
e.g., to help the human understand whether the AI’s reasoning will
generalize, but our arguments pertain only to decision making.

In this paper, we present a perspective we believe explains the
seemingly mixed empirical results found throughout the XAI liter-
ature. Furthermore, our proposal is consistent with the way human

Decision Novel intuitions Assessment

Human

AI

Update

Model AuditKnowledge Discovery

Model Development

Decision Making

Recommendation

Explanation
+

Figure 1: Researchers suggest that AI explanations could aid
numerous human-AI processes, including decision making,
model development, knowledge discovery, and model audit.
In this paper, we focus solely on understanding whether ex-
planations are helpful in the context of AI-advised decision
making. We claim AI explanations cannot foster appropri-
ate reliance and engender complementary performance in
decision making, except in the rare instances in which they
e�ciently verify the AI’s recommendation.

groups reach consensus on “intellective” tasks [52]. We argue ex-
planations provided by an AI model are helpful in decision
making (engender complementary performance [7]) to the
extent they allow a decision maker to verify the AI’s recom-
mendation.While this theory may appear self-evident,

(1) Most work on XAI has focused instead on creating inher-
ently interpretable models or generating faithful post-hoc
explanations of the AI’s reasoning process.

(2) Most of these explanations do not support such veri�cation.
Explanations which faithfully expose the AI’s reasoning process
may well be useful for debugging the AI or predicting its ability
to generalize, but it does not seem to help human decision mak-
ers make judgements on individual task instances. Indeed, most
human-subject studies have shown that explanations fail to produce
complementary performance in decision making; the sole excep-
tions are explanations that support answer veri�cation (Table 1).

The rest of this paper is structured as follows. The next section
surveys the con�icting results from prior studies on XAI utility.
Section 3 details the decision making context, which is our focus in
this paper. Section 4 presents our core argument — explanations
must facilitate veri�cation in order to engender complementary
performance. Section 5 discusses the concept of appropriate reliance,
arguing this term has become overloaded, leading to confusion;
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The current literature on AI-advised decision making -- involving explainable AI 
systems advising human decision makers -- presents a series of inconclusive 
and confounding results. To synthesize these findings, we propose a simple 
theory that elucidates the frequent failure of AI explanations to engender 
appropriate reliance and complementary decision making performance. We 
argue explanations are only useful to the extent that they allow a human 
decision maker to verify the correctness of an AI's prediction, in contrast to 
other desiderata, e.g., interpretability or spelling out the AI's reasoning process. 
Prior studies find in many decision making contexts AI explanations do not 
facilitate such verification. Moreover, most tasks fundamentally do not allow 
easy verification, regardless of explanation method, limiting the potential 
benefit of any type of explanation. We also compare the objective of 
complementary performance with that of appropriate reliance, decomposing 
the latter into the notions of outcome-graded and strategy-graded reliance.
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and confounding results. To synthesize these findings, we propose a simple 
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other desiderata, e.g., interpretability or spelling out the AI's reasoning process. 
Prior studies find in many decision making contexts AI explanations do not 
facilitate such verification. Moreover, most tasks fundamentally do not allow 
easy verification, regardless of explanation method, limiting the potential 
benefit of any type of explanation. We also compare the objective of 
complementary performance with that of appropriate reliance, decomposing 
the latter into the notions of outcome-graded and strategy-graded reliance.

Reducing expansion effort via one-click expansion actions

2
What is the difference between 

outcome and strategy graded reliance?

WhyExpandDefine

AI-generated question, 
inferring user intent 
based on context

Definition & 
Instantiation

Expansion Motivation



In-situ expansions

The current literature on AI-advised decision making -- involving explainable AI 
systems advising human decision makers -- presents a series of inconclusive 
and confounding results. To synthesize these findings, we propose a simple 
theory that elucidates the frequent failure of AI explanations to engender 
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facilitate such verification. Moreover, most tasks fundamentally do not allow 
easy verification, regardless of explanation method, limiting the potential 
benefit of any type of explanation. We also compare the objective of 
complementary performance with that of appropriate reliance, decomposing 
the latter into the notions of outcome-graded and strategy-graded reliance.
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Outcome-graded reliance defines a reliance behavior based on human 
acceptance of AI advice conditioned on the post-hoc correctness of 
the AI. Strategy-graded reliance defines a reliance behavior based on 
the relative expected performance of the human and the AI.

Define “outcome-graded and 
strategy-graded reliance”.
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is to rely on the party most likely to have the correct answer.
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Instead, consider an alternative definition, strategy-
graded reliance, where reliance is appropriate if the 
human accepts an AI recommendation when the AI is 
expected to outperform the human, and rejects otherwise 
(see Figure 5 right). Unlike outcome-graded reliance, 
strategy-graded reliance is neither post-hoc nor 
nondeterministic; it considers the appropriateness of 
reliance given the expected relative performance of the 
human and the AI. The optimal strategy is to rely on the 
party most likely to have the correct answer.
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Abstract

We present QLORA, an efficient finetuning approach that reduces memory us-
age enough to finetune a 65B parameter model on a single 48GB GPU while
preserving full 16-bit finetuning task performance. QLORA backpropagates gradi-
ents through a frozen, 4-bit quantized pretrained language model into Low Rank
Adapters (LoRA). Our best model family, which we name Guanaco, outperforms
all previous openly released models on the Vicuna benchmark, reaching 99.3%
of the performance level of ChatGPT while only requiring 24 hours of finetuning
on a single GPU. QLORA introduces a number of innovations to save memory
without sacrificing performance: (a) 4-bit NormalFloat (NF4), a new data type that
is information theoretically optimal for normally distributed weights (b) Double
Quantization to reduce the average memory footprint by quantizing the quantization
constants, and (c) Paged Optimizers to manage memory spikes. We use QLORA
to finetune more than 1,000 models, providing a detailed analysis of instruction
following and chatbot performance across 8 instruction datasets, multiple model
types (LLaMA, T5), and model scales that would be infeasible to run with regular
finetuning (e.g. 33B and 65B parameter models). Our results show that QLoRA
finetuning on a small high-quality dataset leads to state-of-the-art results, even
when using smaller models than the previous SoTA. We provide a detailed analysis
of chatbot performance based on both human and GPT-4 evaluations showing that
GPT-4 evaluations are a cheap and reasonable alternative to human evaluation. Fur-
thermore, we find that current chatbot benchmarks are not trustworthy to accurately
evaluate the performance levels of chatbots. A lemon-picked analysis demonstrates
where Guanaco fails compared to ChatGPT. We release all of our models and code,
including CUDA kernels for 4-bit training.2

1 Introduction
Finetuning large language models (LLMs) is a highly effective way to improve their performance,
[40, 62, 43, 61, 59, 37] and to add desirable or remove undesirable behaviors [43, 2, 4]. However,
finetuning very large models is prohibitively expensive; regular 16-bit finetuning of a LLaMA 65B
parameter model [57] requires more than 780 GB of GPU memory. While recent quantization
methods can reduce the memory footprint of LLMs [14, 13, 18, 66], such techniques only work for
inference and break down during training [65].

We demonstrate for the first time that it is possible to finetune a quantized 4-bit model without any
performance degradation. Our method, QLORA, uses a novel high-precision technique to quantize
a pretrained model to 4-bit, then adds a small set of learnable Low-rank Adapter weights [28]

⇤Equal contribution.
2https://github.com/artidoro/qlora and https://github.com/TimDettmers/bitsandbytes

Preprint. Under review.
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inference and break down during training [65].
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preserving full 16-bit finetuning task performance. QLORA backpropagates gradi-
ents through a frozen, 4-bit quantized pretrained language model into Low Rank
Adapters (LoRA). Our best model family, which we name Guanaco, outperforms
all previous openly released models on the Vicuna benchmark, reaching 99.3%
of the performance level of ChatGPT while only requiring 24 hours of finetuning
on a single GPU. QLORA introduces a number of innovations to save memory
without sacrificing performance: (a) 4-bit NormalFloat (NF4), a new data type that
is information theoretically optimal for normally distributed weights (b) Double
Quantization to reduce the average memory footprint by quantizing the quantization
constants, and (c) Paged Optimizers to manage memory spikes. We use QLORA
to finetune more than 1,000 models, providing a detailed analysis of instruction
following and chatbot performance across 8 instruction datasets, multiple model
types (LLaMA, T5), and model scales that would be infeasible to run with regular
finetuning (e.g. 33B and 65B parameter models). Our results show that QLoRA
finetuning on a small high-quality dataset leads to state-of-the-art results, even
when using smaller models than the previous SoTA. We provide a detailed analysis
of chatbot performance based on both human and GPT-4 evaluations showing that
GPT-4 evaluations are a cheap and reasonable alternative to human evaluation. Fur-
thermore, we find that current chatbot benchmarks are not trustworthy to accurately
evaluate the performance levels of chatbots. A lemon-picked analysis demonstrates
where Guanaco fails compared to ChatGPT. We release all of our models and code,
including CUDA kernels for 4-bit training.2

1 Introduction
Finetuning large language models (LLMs) is a highly effective way to improve their performance,
[40, 62, 43, 61, 59, 37] and to add desirable or remove undesirable behaviors [43, 2, 4]. However,
finetuning very large models is prohibitively expensive; regular 16-bit finetuning of a LLaMA 65B
parameter model [57] requires more than 780 GB of GPU memory. While recent quantization
methods can reduce the memory footprint of LLMs [14, 13, 18, 66], such techniques only work for
inference and break down during training [65].

We demonstrate for the first time that it is possible to finetune a quantized 4-bit model without any
performance degradation. Our method, QLORA, uses a novel high-precision technique to quantize
a pretrained model to 4-bit, then adds a small set of learnable Low-rank Adapter weights [28]

⇤Equal contribution.
2https://github.com/artidoro/qlora and https://github.com/TimDettmers/bitsandbytes
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Evaluation

Qualitative interview study with 9 scholars

Deployment study at a conference (n=275)



Interview study

What are the benefits and disadvantages of using 
expandable abstracts to triage scientific papers?

3 - 5 seed papers relevant to 
their current research interests

20 - 25 other papers via S2 
recommendations API

Exploration (~30min) over 
the list of abstracts



Participants liked how the expansions allowed them to surface 
details from the paper using simple interactions with the abstracts 
rather than manually searching for them over the full papers. 

Abstracts have a common structure and served as a jumping-off 
point to pull in information from different sections when needed.

Findings | Overall utility

Current LLMs achieve more than passable performance on both 1) 
answering user’s questions and 2) inferring a user’s information 
need based on context. 

Participants were surprised at the quality of the generated 
expansions. Everything “looked” factual, and seemed to “extract 
meaning” from the paper rather than just summarize. 

Participants mentioned how the AI-generated questions “seemed 
to almost read my mind when I click on something or highlight 
something.”



Findings | Multiple layers of affordances

AI-suggested expandable entities

The concert of mixed-initiative interactions satisfied the majority 
of user’s information needs while reading an abstract.

Strategy-Graded Reliance

Expected to  
Underperform Human

Expected to 
Underperform Human

Human Decision Maker

AI Adviser

Accept AI Rec.Reject AI Rec.

Outcome-Graded Reliance

Correct

Incorrect

Human Decision Maker

Accept AI Rec.Reject AI Rec.

Under-reliance

Over-reliance

Appropriate 
Outcome-Graded 

Reliance

Appropriate 
Outcome-Graded 

Reliance

Under-reliance

Over-reliance

Appropriate 
Strategy-Graded 

Reliance

Appropriate 
Strategy-Graded 

Reliance

AI Adviser

Figure 5: We propose a clari�cation of two notions of reliance behavior commonly con�ated in the literature. Outcome-graded
reliance is appropriate if the human decision maker accepts an AI recommendation when it is correct and rejects it otherwise;
note that this de�nition is conditioned on the post-hoc correctness of the AI. We argue this de�nition is problematic given its
outcome-dependent and nondeterministic nature. In contrast, strategy-graded reliance is behavior that defers to the AI when
its expected performance is superior to the human’s expected performance.

borrower ends up defaulting, while the other repays the
loan. The de�nition says it is ‘appropriate’ to rely on the AI’s
advice on one case but not on the other — even though they
are indistinguishable!

Instead, consider an alternative de�nition, strategy-graded re-
liance, where reliance is appropriate if the human accepts an AI
recommendation when the AI is expected to outperform the human,
and rejects otherwise (see Figure 5 right). Unlike outcome-graded
reliance, strategy-graded reliance is neither post-hoc nor nonde-
terministic; it considers the appropriateness of reliance given the
expected relative performance of the human and the AI. The opti-
mal strategy is to rely on the party most likely to have the correct
answer. A key question here is “Upon what information is that
expectation computed?” There are several possibilities.

• Past performance: If past experience shows the AI is more
likely to be correct than the human, it might be appropriate
to defer to the AI even without information about this par-
ticular decision instance. Note this policy cannot produce
complementary performance.

• Previous characteristics + instance features: Conditioning
on the current instance (i.e., speci�c details of the task at
hand) can lead to complementary performance. For example,
if a driver knew her auto-drive car was less prone to accidents
when on the freeway, she might con�dently take her hands
o� thewheel in that situation— even if she knew that shewas
the better driver onwinding country roads.When automated,
this type of conditioning resembles a human-AI delegation
work�ow (discussed at the end of §6.2).

• Previous characteristics + the AI’s recommendation: Con-
ditioning on the AI’s recommendation allows the human to
adopt a policy of the form “I know the AI is conservative and
very unlikely to err with a false positive, so I will accept pos-
itive recommendations and only scrutinize instances when
the AI o�ers a negative recommendation.”

• Previous characteristics + the AI’s explanation: In this pa-
per, we have argued this condition rarely improves upon the

previous strategy, and only when the explanation supports
veri�cation.

In contrast to complementary performance, which refers to the
team’s measured performance, both notions of reliance de�ne an
attribute of the human’s behavior relative to the AI. Furthermore,
while a policy of strategy-guided reliance will hopefully lead to
complementary performance, it’s not guaranteed to do so. In partic-
ular, if the human’s estimates of their relative accuracy (compared
to the AI) are poor, team performance may drop.

We believe the strategy-graded de�nition of reliance is the bet-
ter objective. To illustrate the shortcomings of outcome-graded
reliance, consider a decision making task in which the human is
historically 60% accurate, while the AI is 99.999% accurate. On any
given instance of the task, if the human is uncertain of the answer, is
it appropriate to rely on the AI’s recommendation? Intuitively, the
answer seems a clear ‘yes’. But if the AI is later found incorrect, the
outcome-graded de�nition says “Inappropriate,” while the strategy-
graded de�nition matches intuition and says “Appropriate.”

Outcome-graded reliance is similar to complementary perfor-
mance in that both qualities can only be measured post hoc. How-
ever, there are subtle di�erences between these notions, beyond
the fact that one measures a pattern of human behavior and the
other the performance of a human-AI team. For example, imagine
a AI-assisted image classi�cation task with 1000 potential classes.
Suppose two individuals, Avery and Blake, are 80% and 50% accurate
at the task alone, respectively, and the AI is 10% accurate. Luckily,
the AI outputs veri�able explanations, so both Avery and Blake
can perfectly tell when the AI is correct. Both follow a policy of ac-
cepting the AI’s recommendation when it is correct, and otherwise
solving the problem themselves. According to the de�nition, both
Avery and Blake have (near) perfect outcome-graded reliance, but
their strategies lead to very di�erent expected team performance:
82% for Avery and 55% for Blake.1

1Expected accuracy can be calculated as ⇢ [022�E4A~ ] = 0.1 + 0.8 ⇥ (1 � 0.1) = 0.82
for Avery and ⇢ [022⌫;0:4 ] = 0.1 + 0.5 ⇥ (1 � 0.1) = 0.55 for Blake. They both have
near perfect outcome-graded reliance because their policy dictates following the AI
when it is correct and not when it is incorrect; note there is a non-zero probability of
each individual trivially selecting the same incorrect answer as the AI.
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Albert Einstein was a German-born theoretical physicist, widely 
acknowledged to be one of the greatest and most influential 
physicists of all time. Albert Einstein was born in Ulm, in the Kingdom 
of Württemberg in the German Empire, on 14 March 1879 into a 
family of secular Ashkenazi Jews. His parents were were Hermann 
Einstein, a salesman and engineer, and Pauline Koch. In 1880, the 
family moved to Munich, where Einstein's father and his uncle Jakob 
founded Elektrotechnische Fabrik J. Einstein & Cie, a company that 
manufactured electrical equipment based on direct current.

Factoid QA (from trusted source)

Where was Albert Einstein born?

Ulm, Germany

Sentiment Analysis
Is this movie review positive or negative?

Positive

Right from the start the special effects wowed me and I was stunned. 
The theme was engaging and I felt transported to a different world. 
Despite a few too many twists and turns, the story was ok as well — a 
bit unbelievable, but I suppose that’s Hollywood today. My biggest 
concern was character development — there really wasn’t any. The 
stars fit into standard hero roles. Furthermore, no one changed over 
the course of the film. Thus, despite the promising beginning, my final 
conclusion was one of disappointment. Taken as a whole, I felt the 
move was terrible.

Example

AI Recommendation

AI Explanation

Example

AI Recommendation

AI Explanation

(correct) (incorrect)

Inspecting highlights is conclusive. Inspecting highlights is insufficient.Verification Verification

Figure 4: The utility of an explanation is not a simple function of explanation type, as these two examples illustrate. Both use
an explanation style that highlight key spans of text, but their ability to induce complementary performance is very di�erent.
While these explanations can be useful for factoid QA from trusted sources, they are less successful for sentiment analysis [7].
The di�erence lies in whether the human can reliably verify the AI’s answer by solely inspecting the highlighted text.

(e.g., environmental, social, or societal). For example, one might
be able to correlate a criminal’s probability for recidivism with
factors such as age or gender, but there is no perfect way to predict
the future. As a result, the utility of verifying a recommendation
becomes limited by the extent of stochasticity present in a task.

In summary, the more easily an explanation enables veri�cation
of prediction correctness, the more likely it is to produce com-
plementary performance. Note that both the semantic content of
the explanation and its presentation (i.e., the user interface which
presents the explanation) a�ect the ease of human veri�cation.
However, other factors may also contribute, such as a decision
maker’s desire to engage with explanations within cognitively ef-
fortful tasks (i.e., Need For Cognition [13]) and the task’s inherent
cognitive load.

4.3 Veri�cation and Human Intuitions
Human veri�cation of an AI recommendation (with or without
an explanation) is only possible if decision maker has su�cient
task-speci�c knowledge to characterize solutions. For instance,
veri�cation of an explanation in the maze solving task requires
implicit assumptions about the human’s understanding of the task
(e.g., what constitutes a valid path through a maze).

Chen et al. [19] present a similar framework to ours, articulating
how human intuitions can interact with AI explanations to improve
decision making. They describe various examples of task-speci�c
human intuitions; for instance, in prostate cancer diagnosis, intu-
itions might refer to knowledge of the location of the prostate in a
medical image and the association between darkness and tumor. In
sentiment analysis, intuitions might refer to an understanding of
language and its in�uence on polarity. Through their theoretical
framework, they suggest human intuitions can lead to complemen-
tary performance in one of two ways: revealing signs of model
error and supporting the discovery of novel knowledge.

In line with this theory, the belief that AI explanations could
su�ciently interact with task-speci�c human intuitions to reveal
model errors and thus enable complementary performance was a
keymotivation for providing AI explanations in AI-advised decision
making. In practice, however, this type of explanation does not
appear to produce complementary performance on most tasks.

5 WHAT IS APPROPRIATE RELIANCE?
Previous sections of this paper focus on complementary perfor-
mance — an ideal team that performs better than the human or
AI alone. However, many researchers strive instead to design XAI
systems that induce appropriate reliance.

Unfortunately, “appropriate reliance” is not well-de�ned within
the XAI literature. One common characterization suggests reliance
is appropriate if the human accepts an AI recommendation when the
AI is correct, and rejects the recommendation when the AI is incor-
rect [7, 13, 73, 82, 84, 88]. Reliance is therefore inappropriate when
the human accepts the recommendation when the AI is incorrect
(over-reliance), and when the human rejects the recommendation
when the AI is correct (under-reliance). This characterization cap-
tures a notion of outcome-graded reliance (see Figure 5 left), and
is evaluable given actual decision outcomes. Unfortunately, we
suggest outcome-graded reliance is inadequate to measure the per-
ceived improvements in decision making performance. There are
two major problems with the outcome-graded de�nition:

• Post-hoc: It is impossible to know if one’s reliance is ‘appro-
priate’ until after seeing the �nal result.Was it ‘inappropriate’
to see the best doctor in the world, if one happens to get an
unlucky outcome?

• Nondeterministic: Consider two identical examples (e.g.,
bank loan applications) whose input features are exactly the
same, and suppose theAI provides the same recommendation
in both cases (e.g., unlikely to default). But suppose that one
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theory that explains under what circumstances these explanations
can in fact improve decision making performance, if at all.

3 AI-ADVISED DECISION MAKING
We restrict our analysis of AI explanation utility to the established
paradigm of AI-advised decision making [6], de�ned as follows:

(1) Given an individual instance of a task, an AI makes a recom-
mendation, and possibly provides an explanation.

(2) A human decision maker makes the �nal decision, drawing
on features of the task, an AI’s recommendation, and (if
available) its explanation (Figure 2).

Moreover, we are concerned with the e�ect of explanations on
decision making performance via objective measures of e�cacy
such as accuracy, error rate, or speed of decision-making [5].

Beyond simply improving the performance of a human-AI team,
we are interested in complementary performance, where the human-
AI system performs better (for example, its accuracy is higher or
decisions are made more cheaply) than either the human or AI
separately. While complementarity is not necessary for AI assis-
tance to be deemed “useful,” for many researchers it is the intuitive
motivation for coupling a human and AI together. Furthermore, if
the consequence of using a human-AI team lowers performance (for
whatever metric is deemed most important), we should have clear
understanding of this e�ect.

Given the focus on complementary performance, we do not at-
tempt to characterize the utility (or lack thereof) of explanations
for other possible objectives in AI-advised decision making. These
include task-centered metrics such as subjective assessments of
e�cacy (e.g., self-rated accuracy, decision con�dence) or satisfac-
tion (e.g., cognitive load, helpfulness), and AI-centered metrics such
as trust and reliance on the AI, perceptions of AI fairness, and
understanding of the AI.

Explanations are often characterized based on the scope of infor-
mation they convey about an AI model. For decision making, the
existing literature largely studies the in�uence of local explanations,
which provide information about individual AI recommendations.
These include visualizations of model uncertainty, feature impor-
tance, rule-based explanations, example-based explanations, coun-
terfactual explanations, or natural language rationale explanations.
In contrast, global explanations aim to provide holistic insight into
the entirety of an AI model, for instance by visualizing or otherwise
detailing a model’s complete architecture. Faithfulness is another
dimension used to characterize explanations. A faithful explanation
is one that accurately represents the reasoning process behind a
model’s prediction. Some intrinsically interpretable models, such as
GA2Ms [17], are favored because it is (relatively) easy for a human
to understand the model’s behavior. Other explanations are gener-
ated by post-hoc analysis, e.g. using techniques such as LIME [71]
or SHAP [58]. While these methods produce local explanations for
otherwise inscrutable models, they are by de�nition approxima-
tions or a model’s true reasoning process, and hence raise concerns
of faithfulness.

In this paper, we present a theory of veri�cation agnostic to
these particular characterizations of explanations (local vs. global,
intrinsically interpretable vs approximate post-hoc). We argue ex-
planation faithfulness is largely irrelevant; the main issue that

a�ects decision making performance is whether the explanation
helps the human verify the proposed solution.

4 VERIFIABILITY
We argue that explanations can enable complementary per-
formance in AI-advised decision making to the extent they
allow a decision maker to verify an AI’s recommendation.
Here, we refer to veri�cation of a candidate answer as the process
of determining its correctness. In the psychology literature, this
notion is also called demonstrability and has been associated with
the ability of one individual being able to convince other members
to switch to a correct answer on ‘intellective’ problems such as
math puzzles [52].

Note that some problems may not have a veri�able answer, and
many AI explanations fundamentally cannot satisfy this desidera-
tum and thus do not e�ectively support complementary decision
making. For instance, one of themost common types of explanations
is local feature importance, e.g., model coe�cients of interpretable
models or approximate post-hoc explanations. These types of expla-
nations which describe a decision-making process can either align
with human intuitions, potentially resulting in con�rmation bias,
or contradict human intuitions, in which case a decision maker
may often �nd it more convenient to explain away any di�erences.
In the best case, the AI’s explanation reveals a salient misalign-
ment between the AI’s decision making process and its expected
behavior, allowing a decision maker to disregard the AI’s recom-
mendation. While feature importance explanations may provide
some indication of how much each feature in�uenced the AI’s de-
cision, they typically do not allow a decision maker to verify the
AI’s recommendation.

4.1 Useful Explanations Allow Veri�cation
To see the importance of veri�cation, consider the task of AI-advised
maze solving (similar to the study in [82]) — the goal is to determine
whether a valid path exists between a speci�ed entrance and exit
in the maze. The AI recommends a binary decision (i.e., yes or no),
and explains its decision with a highlighted path through the maze
to the exit. Without the explanation, a human cannot verify the
AI’s recommendation short of solving the maze themselves. Thus
the human must adopt a policy of blind trust or disregard the AI’s
advice — neither of which produce complementary performance.
Given the path, however, the decision maker is able to easily verify
the AI’s recommendation, �ltering mistakes, and only expending
e�ort to solve mazes where the AI errs. If the AI is reasonably good,
this does produce complementary performance [82].

Veri�cation given AI explanations in decision making closely
resembles veri�cation of certi�cates or solutions within canonical
NP-complete computational decision problems (Figure 3). While
�nding a solution to an NP-complete problem likely takes expo-
nential time, verifying the certi�cate can be done with polynomial
computation. In both contexts, while �nding a solution is challeng-
ing (e.g., requiring an exhaustive search), checking the correctness
of an explanation enables e�cient veri�cation of the answer.

Unfortunately, our maze example is unusual — explanations in
the tasks most commonly considered in XAI studies (e.g., recidivism
prediction, medical applications, sentiment analysis, or deceptive
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Maze and other NP-complete problems

XAI Problem

Solution

Complexity of  
Verification

Maze solving — Is there a valid path? 

Slow — exhaustive search

Fast with explanation — 
 linear in path length

NPC Problem Vertex coloring — Can the graph be 3-colored 
so no adjacent vertices share a color? 

Solution Slow — exponential search

Complexity of  
Verification

Fast with certificate —  
linear in # of edges

Figure 3: Tasks in which AI explanations have been shown to provide veri�cation of an AI recommendation (e.g., maze solving)
resemble NP-complete decision problems. Complementary performance can be achieved in these cases because the AI does the
time-consuming problem solving and the human can quickly verify the correctness of a solution. Of course, this veri�cation
process is task speci�c. Sometimes fast veri�cation is only possible for some answer types; for example, an illegal maze path
does not preclude the existence of a legal path. On average, however, these explanations speed human veri�cation [82].

review detection) do not enable veri�cation. Explanations for these
tasks typically include providing model coe�cients or key features,
which serve to elucidate the model’s decision making process rather
than enable veri�cation of a proposed decision.

For example, for a sentiment analysis task an AI model may
explain itself by highlighting spans of text which were most in�u-
ential to its decision (Figure 4 (right)). This may appear reassuring,
but can lead to a false sense of trust when the AI makes mistakes.
Indeed, user studies have shown that these explanations aren’t any
more helpful than seeing the AI’s internal con�dence [7]. A rare
exception where an AI explanation consisting of an extracted span
of text can lead to complementary performance is factoid ques-
tion answering from trusted sources (illustrated in Figure 4 (left));
such a span, even in isolation, does allow veri�cation of answer
correctness.

4.2 A Spectrum of Veri�cation
Whether an explanation a�ords veri�cation of a recommendation
is usually not an all or nothing proposition, but rather a point along
a spectrum. Characteristics of the human decision maker, the deci-
sion making task, and the AI explanation may in�uence where an
explanation lies along this spectrum— hence, determining its utility.
On one extreme are contexts that a�ord no veri�cation whatsoever,
such as problems where the actual outcomes are independent from
the problem features, or where all errors made by the AI assistance
are random rather than systematic. The other end of the spectrum
includes intractable but easily veri�able problems (e.g., the maze
solving task, NP-complete decision problems). But even the maze
task a�ords only one-sided veri�ability: an explanation depicting
an illegal path doesn’t imply that no solution exists.

Explanations do not need to provide complete veri�cation of an
AI recommendation. Rather, by su�ciently lowering the cost of
veri�cation, explanations can provide enough utility to improve
team performance [82]. Consider a variant of the maze solving
task where the AI provides an explanation which highlights 90% of
the path to the exit rather than the complete path. We argue this
explanation may reduce the human’s cognitive cost of verifying
the AI enough to yield complementary performance.

Another variation of the maze problem likely leads to a di�erent
result. Suppose the question is not just path existence, but opti-
mality. Speci�cally, consider the following variation on the maze
task: given a maze with a start and three alternative exits, which
of the exits can be reached with the shortest valid path from the
start? The AI recommends a single exit and explains by drawing a
path from the start to its speci�ed exit. We conjecture the following
hypotheses: 1) this explanation will not lead to complementary
performance for this task, since it doesn’t signi�cantly reduce the
cost of verifying the AI’s recommendation. However, 2) if the expla-
nation consisted of the shortest valid paths to all three exits, then
this would yield complementary performance.

With feature-based explanations on real-world decision-making
tasks, positive veri�cation is rarely possible. Instead, explanations
may be better suited to convey a fatal �aw in the AI’s decision mak-
ing process. For example, if an AI trained to classify lung cancer
from CT images justi�es its diagnosis by highlighting an artifact
outside the lung, that should raise concern [17]. Some studies have
shown that explanations can reveal model error to yield complemen-
tary decision making performance (in particular, when the revealed
errors are su�ciently egregious to indicate strong signals of model
unreliability) [21, 78]. However, across most decision making con-
texts, we believe there are two reasons why such explanations
frequently fail to produce complementary performance:

(1) Plausible but wrong: The AI may make a bad decision for
a credible reason (e.g., Figure 4 right). Hence, explanations
which clearly reveal model error to the human are rare.

(2) Right for the wrong reason: The AI’s recommendation
may still be right, even when its explanation is wrong. In this
case, the human may incorrectly reject the correct answer.
However, even if the human escapes that pitfall, they still
need to solve the problem from scratch, and no time is saved.

Many real-world decision making tasks, such as those involv-
ing inferences over human action, can further exhibit aleatoric
uncertainty, arising from the inherent stochastic nature of the de-
pendency between the observed instance features and the actual
decision outcome. In these cases, a correct decision is not entirely
determined by features evident to the human or the AI model, but
is also in�uenced by irreducible uncertainty within latent factors

5

Paper Decision Making Task Explanations Enables
Veri�cation

Complementary
Performance

Biran and McKeown [10] Stock price prediction Rationale 7 7
Green and Chen [33] Pretrial detention Feature importance 7 7
Green and Chen [33] Financial lending Feature importance 7 7
Weerts et al. [85] Income prediction Feature importance 7 7
Lai and Tan [50] Deceptive review Feature importance (text highlights) 7 7
Lai et al. [49] Deceptive review Feature importance (text highlights) 7 7
Buçinca et al. [12] Food fat content prediction Feature importance 7 7
Carton et al. [16] Toxicity detection Feature importance (text highlights) 7 7
Zhang et al. [91] Income prediction Feature importance 7 7
Liu et al. [56] Recidivism prediction Feature importance 7 7
Alufaisan et al. [4] Income prediction Feature importance 7 7
Alufaisan et al. [4] Recidivism prediction Feature importance 7 7
Wang and Yin [84] Recidivism prediction Feature importance 7 7
Wang and Yin [84] Forest cover prediction Feature importance 7 7
Nourani et al. [66] Kitchen policy veri�cation Feature importance 7 7
Poursabzi-Sangdeh et al. [69] Apartment price prediction Feature importance 7 7
Jesus et al. [41] Fraud detection Feature importance (text highlights) 7 7
Nguyen et al. [65] Image classi�cation Attribution maps 7 7
Kim et al. [46] Image classi�cation Attribution maps & Prototype-based 7 7
Parrish et al. [68] Long document MCQA Rationale 7 7
Sivaraman et al. [75] Sepsis treatment Feature importance 7 7

Bansal et al. [7] Sentiment classi�cation Feature importance (text highlights) 7 ¢
Bansal et al. [7] Logical reasoning Rationale 7 ¢
Taesiri et al. [78] Image classi�cation Nearest neighbors 7 ¢
Feng and Boyd-Graber [27] Quizbowl trivia QA Rationale 3 3
González et al. [32] Wikipedia ODQA Rationale 3 3
Vasconcelos et al. [82] Maze solving Path highlights 3 3
Lee et al. [55] Multitask MCQA Rationale (interactive) 3 3
Bowman et al. [11] Long form MCQA Rationale (interactive) 3 3

Table 1: Recent studies investigating the e�ect of AI explanations on task performance in AI-advised decisionmaking. Common
explanation types include descriptions of feature importance (over both tabular and textual features) and natural language
rationales. Most of these explanations describe the AI’s decision-making process rather than help a human decision maker
verify the AI’s recommendation. But only the latter engender complementary performance (3), where team performance exceeds
that of the human or AI alone. Sometimes explanations which do not enable veri�cation may appear to yield complementary
performance (¢); however, in these cases, it is unclear whether explanations actually o�er utility as providing only AI recom-
mendations and con�dence scores (without the explanations) also resulted in complementary performance.

we propose two alternative terms: outcome-graded reliance and
strategy-graded reliance to tease these apart. Section 6 places our
conjecture in a broader context, and Section 7 concludes.

2 BACKGROUND
Providing interpretability for AI models, for instance through expla-
nations, has been one way researchers have attempted to facilitate
more informed and accurate decision making [9]. One set of studies
have found AI explanations can improve human-AI performance
over human decision making alone and over human-AI teams with
AI recommendations without explanations [10, 12, 13, 26, 38, 49, 50].
However, none of these studies found explanations could improve
human-AI performance beyond the original capabilities of the AI
model. The studies also involved collaborations in which the AI
model signi�cantly outperformed the human decision maker. It is
therefore unclear whether explanations truly improved the human-
AI decision making process, or if explanations convinced humans
to blindly trust the AI’s recommendations. In this type of scenario

— where the AI performs at a superhuman level — should we sim-
ply allow the AI to operate independently? It is arguably naive to
believe the human is performing any meaningful oversight, when
the e�ect of explanations is inducing blind trust.

In response, researchers have investigated how explanations
might support decision makers in developing appropriate reliance
on AI assistance, rather than improving performance through blind
trust. While appropriate reliance is not well-de�ned in the liter-
ature (as explained in §5), one common de�nition states that ap-
propriate reliance is achieved when decision makers agree with
the AI when its recommendation is correct, and disagree with the
AI when its recommendation is incorrect. Unfortunately, achiev-
ing this notion of appropriate reliance through explanations has
been elusive [3, 7, 16, 18, 33, 39, 41, 44, 56, 66, 68, 69, 75, 85, 91].
Fundamentally, it can be hard for people to know how much to
trust recommendations [12, 30, 40, 75]. And though AI explana-
tions were hypothesized to make the AI’s decision making process
more interpretable and in turn support appropriate reliance, most
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ABSTRACT
The current literature on AI-advised decision making — involving
explainable AI systems advising human decision makers — presents
a series of inconclusive and confounding results. To synthesize these
�ndings, we propose a simple theory that elucidates the frequent
failure of AI explanations to engender appropriate reliance and
complementary decision making performance. In contrast to other
common desiderata, e.g., interpretability or spelling out the AI’s rea-
soning process, we argue explanations are only useful to the extent
that they allow a human decision maker to verify the correctness of
the AI’s prediction. Prior studies �nd in many decision making con-
texts AI explanations do not facilitate such veri�cation. Moreover,
most tasks fundamentally do not allow easy veri�cation, regardless
of explanation method, limiting the potential bene�t of any type of
explanation. We also compare the objective of complementary per-
formance with that of appropriate reliance, decomposing the latter
into the notions of outcome-graded and strategy-graded reliance.

1 INTRODUCTION
Recent years have seen an explosion of work on explainable AI
(XAI), but there have been mixed results on whether explanations
actually help humans who are making decisions with AI support.
In this decision making context, the role of explanations is to foster
appropriate reliance by helping the human understand whether
or not the AI’s advice should be trusted. Appropriate reliance is
desired in order to achieve complementary performance, where
the human-AI team performs better than either the human or AI
alone [7]. But here we see a confusing montage of results: not
only do most papers �nd explanations don’t induce complementary
performance more than baseline methods, such as displaying AI
accuracy or con�dence, but these papers suggest explanations can
in fact increase over-reliance, where the human trusts the AI even
when it errs. The inconclusive nature of these results raises a huge
question for the �eld of XAI: when are explanations useful?

We focus solely on the process of AI-advised decision making,
de�ned as the following: given an instance of a decision making
task, an AI makes a recommendation, and drawing on features of
the task, the AI’s recommendation, and possibly an explanation
for the AI’s recommendation, a human decision maker arrives at
a �nal decision (Figure 1). There are many other possible uses for
AI explanations [47, 79], including model debugging and auditing,
e.g., to help the human understand whether the AI’s reasoning will
generalize, but our arguments pertain only to decision making.

In this paper, we present a perspective we believe explains the
seemingly mixed empirical results found throughout the XAI liter-
ature. Furthermore, our proposal is consistent with the way human
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Figure 1: Researchers suggest that AI explanations could aid
numerous human-AI processes, including decision making,
model development, knowledge discovery, and model audit.
In this paper, we focus solely on understanding whether ex-
planations are helpful in the context of AI-advised decision
making. We claim AI explanations cannot foster appropri-
ate reliance and engender complementary performance in
decision making, except in the rare instances in which they
e�ciently verify the AI’s recommendation.

groups reach consensus on “intellective” tasks [52]. We argue ex-
planations provided by an AI model are helpful in decision
making (engender complementary performance [7]) to the
extent they allow a decision maker to verify the AI’s recom-
mendation. While this theory may appear self-evident,

(1) Most work on XAI has focused instead on creating inher-
ently interpretable models or generating faithful post-hoc
explanations of the AI’s reasoning process.

(2) Most of these explanations do not support such veri�cation.
Explanations which faithfully expose the AI’s reasoning process
may well be useful for debugging the AI or predicting its ability
to generalize, but it does not seem to help human decision mak-
ers make judgements on individual task instances. Indeed, most
human-subject studies have shown that explanations fail to produce
complementary performance in decision making; the sole excep-
tions are explanations that support answer veri�cation (Table 1).

The rest of this paper is structured as follows. The next section
surveys the con�icting results from prior studies on XAI utility.
Section 3 details the decision making context, which is our focus in
this paper. Section 4 presents our core argument — explanations
must facilitate veri�cation in order to engender complementary
performance. Section 5 discusses the concept of appropriate reliance,
arguing this term has become overloaded, leading to confusion;

User manually highlighted entities

Free-form QA

Static expansion actions 
(Define, Expand, Why)

AI-generated 
question

Use attribution to jump into the paper



Findings

Participants

…more often selected an AI-suggested expandable entity 
(77.5%) rather than highlighting their own (22.5%)

…created threaded expansions 58% of the time, suggesting the 
recursive expansions prompted users to ask followup questions

…selected the AI-suggested question 40% of the time, and the 
static questions: Define: 23%, Expand: 23%, Why: 14%

How did participants use each of the features?
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How is strategy-graded reliance calculated?

WhyExpandDefine

Outcome-graded reliance defines a reliance behavior based on human 
acceptance of AI advice conditioned on the post-hoc correctness of the AI.



Deployment study

How do scholars use expandable abstracts in the wild?

To characterize real-world usage, we 
created expandable abstracts for the 

proceedings of VLDB 2023.

275 unique users interacted with the abstracts 
over the two week deployment period.



Findings

How did scholars use each of the features?

Scholars
…more often selected an AI-suggested expandable entity (80%) 
rather than highlighting their own (20%)

…created threaded expansions 28% of the time, suggesting the 
recursive expansions prompted users to ask followup questions

…selected the AI-suggested question 12% of the time, and the 
static questions: Define: 31%, Expand: 42%, Why: 15% 2

How is strategy-graded reliance calculated?

WhyExpandDefine

Outcome-graded reliance defines a reliance behavior based on human 
acceptance of AI advice conditioned on the post-hoc correctness of the AI.

Different usage patterns likely due to different levels of engagement.

…viewed the attributed evidence 15% of the time, and jumped 
into the paper PDF 40% of the time after viewing the evidence

Excerpt from page 7 See in paper context



Risks of expandable abstracts

“In the research realm, I don't think people should be reading just the abstract. 
With this system, I don't think it's that great to just replace the paper reading 
experience with just expanding the abstract all the time and trying to get 
details instead of actually reading the paper. You can use this as a map for going 
to the sections of the paper you want to read, and that's fine. But I don't know 
… if this somehow promotes this culture within research that all we need to 
read is the abstract and I don't think that would be very great either.”  — P3

Augmented intelligence for scholars may harm pedagogical 
and self-learning processes, especially for novice scholars.

LLM hallucination remains a problem, and verification of generated 
expansion accuracy can often be challenging or undesirable.

“When I try to paper in writing my related work, paper writing, the evidence 
button plays a huge, different role. Because I need to see whether the 
responses they are generating are correct or really match with the paper. But 
during the time of abstract exploring, I'm not too caring about the evidence, 
where they come from in the paper.” — P1



Improving expandable abstracts

Incorporate visual media (e.g., figures and tables) 
into expansions when relevant. 

Expand with content from other papers (e.g., 
expand to show other papers that use similar terms, 
or show other papers building on this paper). 

Use the expansions to help scholars smoothly 
transition into reading the full paper.
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