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ABSTRACT

The current literature on Al-advised decision making — involving
explainable Al systems advising human decision makers — presents
aseries of inconclusive and confounding results. To synthesize these
findings, we propose a simple theory that elucidates the frequent
failure of Al explanations to engender appropriate reliance and

decision making In contrast to other

common desiderata, e, interpretability or spelling out the AI's rea-
soning process, we argue explanations are only useful to the extent
that they allow a human decision maker to verify the of
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the AI’s prediction. Prior studies find in many decision making con-
texts Al explanations do not facilitate such verification. Moreover,
most tasks fundamentally do not allow easy verification, regardless
of explanation method, limiting the potential benefit of any type of
explanation. We also compare the objective of complementary per-
formance with that of appropriate reliance, decomposing the latter
into the notions of outcome-graded and strategy-graded reliance.

1 INTRODUCTION

Recent years have seen an explosion of work on explainable Al

( Decision Making ):( Knowledge Discovery ) | Model Audit |
Figure 1: hers suggest that AT ions could aid
human-AI including decision making,

model development, knowledge discovery, and model audit.
In this paper, we focus solely on understanding whether ex-

planations are helpful in the context of Al-advised decision

making. We claim Al explanations cannot foster appropri-

ate reliance and engender complementary performance in
decision making, except in the rare instances in which they

(XAI), but there have been mixed results on whether
actually help humans who are making decisions with Al support.
In this decision making context, the role of explanations is to foster
appropriate reliance by helping the human understand whether
or not the AT’s advice should be trusted. Appropriate reliance is
desired in order to achieve complementary performance, where
the human-Al team performs better than either the human or Al
alone [7]. But here we see a confusing montage of results: not
only do most papers find explanations don’t induce complementary
performance more than baseline methods, such as displaying Al
accuracy or confidence, but these papers suggest explanations can
in fact increase over-reliance, where the human trusts the Al even
when it errs. The inconclusive nature of these results raises a huge
question for the field of XAI: when are explanations useful?

We focus solely on the process of Al-advised decision making,
defined as the following: given an instance of a decision making
task, an Al makes a recommendation, and drawing on features of
the task, the Al’s recommendation, and possibly an explanation
for the A's recommendation, a human decision maker arrives at
a final decision (Figure 1). There are many other possible uses for
Al explanations [47, 79], including model debugging and auditing,
e.g, to help the human understand whether the Al's reasoning will
generalize, but our arguments pertain only to decision making,

In this paper, we present a perspective we believe explains the
seemingly mixed empirical results found throughout the XAI liter-
ature. Furthermore, our proposal is consistent with the way human

~10,000 words

verify the Al’s

groups reach consensus on “intellective” tasks [52]. We argue ex-

planations provided by an Al model are helpful in decision
making (engender complementary performance [7]) to the

extent they allow a decision maker to verify the Al's recom-

mendation. While this theory may appear self-evident,

(1) Most work on XAI has focused instead on creating inher-

ently interpretable models or generating faithful post-hoc
explanations of the A’s reasoning process.

(2) Most of these explanations do not support such verification.

Explanations which faithfully expose the AI's reasoning process

may well be useful for debugging the Al or predicting its ability

to generalize, but it does not seem to help human decision mak-

ers make judgements on individual task instances. Indeed, most
human-subject studies have shown that explanations fail to produce

complementary performance in decision making; the sole excep-

tions are explanations that support answer verification (Table 1).
The rest of this paper is structured as follows. The next section
surveys the conflicting results from prior studies on XAI utility.
Section 3 details the decision making context, which is our focus in
this paper. Section 4 presents our core argument — explanations
must facilitate verification in order to engender complementary
. Section 5 discusses thy of iate reliance,
arguing this term has become overloaded, leading to confusion;
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that they allow a human decision maker to verify the of
the AI’s prediction. Prior studies find in many decision making con-
texts Al explanations do not facilitate such verification. Moreover,
most tasks fundamentally do not allow easy verification, regardless
of explanation method, limiting the potential benefit of any type of
explanation. We also compare the objective of complementary per-
ance with that of appropriate reliance, decomposing the latter
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groups reach consensus on “intellective” tasks [52]. We argue ex-
planations provided by an Al model are helpful in decision
making (engender complementary performance [7]) to the
extent they allow a decision maker to verify the A’s recom-
mendation. While this theory may appear self-evident,

(1) Most work on XAI has focused instead on creating inher-
ently interpretable models or generating faithful post-hoc
explanations of the A’s reasoning process.

(2) Most of these explanations do not support such verification.
Explanations which faithfully expose the AI's reasoning process
may well be useful for debugging the Al or predicting its ability
to generalize, but it does not seem to help human decision mak-
ers make judgements on individual task instances. Indeed, most
human-subject studies have shown that explanations fail to produce
complementary performance in decision making; the sole excep-
tions are explanations that support answer verification (Table 1).

The rest of this paper is structured as follows. The next section
surveys the conflicting results from prior studies on XAI utility.
Section 3 details the decision making context, which is our focus in
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What information should an expansion entail?

A formative study with 7 scholars reading paper
abstracts highlighted four common information needs,
commonly expressed as clarification questions.

Instantiation "What is an example of...”
Definition “What does this mean?”
Motivation “Why did they do this?”

Expansion “How? Tell me more...”
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In-situ expansions

The current literature on Al-advised decision making -- involving explainable Al
systems advising human decision makers -- presents a series of inconclusive
and confounding results. To synthesize these findings, we propose a simple
theory that elucidates the frequent failure of Al explanations to engender
appropriate reliance and complementary decision making performance.VVe
argue explanations are only useful to the extent that they allow a human
decision maker to verify the correctness of an Al's prediction, in contrast to
other desiderata, e.g., interpretability or spelling out the Al's reasoning process.
Prior studies find in many decision making contexts Al explanations do not
facilitate such verification. Moreover, most tasks fundamentally do not allow
easy verification, regardless of explanation method, limiting the potential
benefit of any type of explanation.We also compare the objective of
complementary performance with that of appropriate reliance, decomposing
the latter into the notions of outcome-graded and strategy-graded reliance.

Outcome-graded reliance defines a reliance behavior based on human
Define “outcome-graded and acceptance of Al advice conditioned on the post-hoc correctness of
strategy-graded reliance”. the Al. Strategy-graded reliance defines a reliance behavior based on
the relative expected performance of the human and the Al.
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Define “outcome-graded and acceptance of Al advice conditioned on the post-hoc correctness of
strategy-graded reliance”. the Al. Strategy-graded reliance defines a reliance behavior based on
the relative expected performance of the human and the Al

Strategy-graded reliance is appropriate if a decision maker accepts

an Al recommendation when the Al is expected to outperform the
human (conditioned on factors such as past performance, instance

features, and Al advice), and rejects otherwise. The optimal strategy
is to rely on the party most likely to have the correct answer.

Tell me more about “strategy-
graded reliance”.
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human accepts an Al recommendation when the Al is
expected to outperform the human, and rejects otherwise
(see Figure 5 right). Unlike outcome-graded reliance,
strategy-graded reliance is neither post-hoc nor
nondeterministic; it considers the appropriateness of
reliance given the expected relative performance of the
human and the Al. The optimal strategy is to rely on the
party most likely to have the correct answer.
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Figure 5: We propose a clarification of two notions of reliance commonly conflated in the literature on Al-advised decision
making. Outcome-graded reliance defines a reliance behavior based on human acceptance of Al advice conditioned on the
post-hoc correctness of the Al Specifically, outcome-graded reliance is appropriate if the human decision maker accepts
an Al recommendation when it is correct and rejects otherwise. We argue this definition is problematic given its outcome-
dependent and nondeterministic nature. In contrast, strategy-graded reliance defines a reliance behavior based on the relative
expected performance of the human and the Al Strategy-graded reliance is appropriate if a decision maker accepts an Al
recommendation when the Al is expected to outperform the human (conditioned on factors such as past performance, instance

features, and Al advice), and rejects otherwise.

The definition says it is‘appropriate’ to trust the Al's advice
on one case but not on the other — even though they are
indistinguishable!

Instead, consider an alternative definition, strategy-graded re-
liance, where reliance is appropriate if the human accepts an Al
recommendation when the Al is expected to outperform the human,
and rejects otherwise (see Figure 5 right). Unlike outcome-graded
reliance, strategy-graded reliance is neither post-hoc nor nonde-
terministic; it considers the appropriateness of reliance given the
expected relative performance of the human and the Al The opti-
mal strategy is to rely on the party most likely to have the correct
answer. A key question here is “Upon what information is that
expectation computed?” There are several possibilities.

o Past performance: If past experience shows the Al is more
likely to be correct than the human, it might be appropriate
to defer to the Al even without information about this par-
ticular decision instance. Note this policy cannot produce
complementary performance.

e Previous characteristics + instance features: Conditioning
on the current instance (i.e., specific details of the task at
hand) can lead to complementary performance. For example,
if a driver knew her auto-drive car was less prone to accidents
when on the freeway, she might confidently take her hands
off the wheel in that situation — even if she knew that she was
the better driver on winding country roads. When automated,
this type of conditioning resembles the human-AlI delegation
workflow discussed at the end of Section 6.2.

e Previous characteristics + the AI’s recommendation: Con-
ditioning on the AI's recommendation allows the human to
adopt a policy of the form “I know the Al is conservative and
very unlikely to err with a false positive, so I will accept pos-
itive recommendations and only scrutinize instances when
the Al offers a negative recommendation”

e Previous characteristics + the AI’s explanation: In this pa-
per, we have argued this condition rarely improves upon the

previous strategy, and only when the explanation supports
verification.

In contrast to complementary performance, which refers to the
team’s measured performance, both notions of reliance define an
attribute of the human’s behavior relative to the AL. We believe
the strategy-graded definition of reliance is the better objective. To
illustrate the shortcomings of outcome-graded reliance, consider
a decision making task in which the human is historically 60%
accurate, while the Al is 99.999% accurate. On any given instance of
the task, if the human is uncertain of the answer, is it appropriate
to rely on the AI's recommendation? Intuitively, the answer seems
a clear ‘yes’. But if the human later discovers the Al was wrong, the
outcome-graded definition says “Inappropriate,” while the strategy-
graded definition matches intuition and says “Appropriate”

Outcome-graded reliance is similar to complementary perfor-
mance in the sense that both qualities can only be measured post
hoc. However, there are subtle differences between these notions,
beyond the fact that one measures a pattern of human behavior
and the other the performance of a human-AI team. To elaborate,
consider a three-way classification problem, where widgets must be
graded A, B, or C. Suppose Clare and Dave are both 80% accurate at
the task while the Al is only 10% accurate. Luckily, the Al outputs
verifiable explanations, so both Clare and Dave can perfectly tell
when the Al is correct. Suppose Clare follows the policy of accepting
the AI's recommendation when it is correct, and otherwise choos-
ing randomly. Dave also accepts the AI's recommendation when it
is correct, but solves the problem himself when it is not. According
to the definition, both Clare and Dave have perfect outcome-graded
reliance, but their strategies lead to very different expected team
performance: 55% for Clare and 82% for Dave.

Given the limitations of the outcome-graded definition of ap-
propriate reliance, we suggest researchers focus on the strategy-
graded, or eschew the term ‘appropriate reliance’ altogether. We
argue overall performance is a better objective when evaluating a
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Figure 5: We propose a clarification of two notions of reliance commonly conflated in the literature on Al-advised decision
making. Outcome-graded reliance defines a reliance behavior based on human acceptance of Al advice conditioned on the
post-hoc correctness of the Al Specifically, outcome-graded reliance is appropriate if the human decision maker accepts
an Al recommendation when it is correct and rejects otherwise. We argue this definition is problematic given its outcome-
dependent and nondeterministic nature. In contrast, strategy-graded reliance defines a reliance behavior based on the relative
expected performance of the human and the Al Strategy-graded reliance is appropriate if a decision maker accepts an Al
recommendation when the Al is expected to outperform the human (conditioned on factors such as past performance, instance

features, and Al advice), and rejects otherwise.

The definition says it is‘appropriate’ to trust the Al's advice
on one case but not on the other — even though they are
indistinguishable!

Instead, consider an alternative definition, strategy-graded re-
liance, where reliance is appropriate if the human accepts an Al
recommendation when the Al is expected to outperform the human,
and rejects otherwise (see Figure 5 right). Unlike outcome-graded
reliance, strategy-graded reliance is neither post-hoc nor nonde-
terministic; it considers the appropriateness of reliance given the
expected relative performance of the human and the Al The opti-
mal strategy is to rely on the party most likely to have the correct
answer. A key question here is “Upon what information is that
expectation computed?” There are several possibilities.

o Past performance: If past experience shows the Al is more
likely to be correct than the human, it might be appropriate
to defer to the Al even without information about this par-
ticular decision instance. Note this policy cannot produce
complementary performance.

e Previous characteristics + instance features: Conditioning
on the current instance (i.e., specific details of the task at
hand) can lead to complementary performance. For example,
if a driver knew her auto-drive car was less prone to accidents
when on the freeway, she might confidently take her hands
off the wheel in that situation — even if she knew that she was
the better driver on winding country roads. When automated,
this type of conditioning resembles the human-AlI delegation
workflow discussed at the end of Section 6.2.

e Previous characteristics + the AI’s recommendation: Con-
ditioning on the AI's recommendation allows the human to
adopt a policy of the form “I know the Al is conservative and
very unlikely to err with a false positive, so I will accept pos-
itive recommendations and only scrutinize instances when
the Al offers a negative recommendation”

e Previous characteristics + the AI’s explanation: In this pa-
per, we have argued this condition rarely improves upon the

previous strategy, and only when the explanation supports
verification.

In contrast to complementary performance, which refers to the
team’s measured performance, both notions of reliance define an
attribute of the human’s behavior relative to the AL. We believe
the strategy-graded definition of reliance is the better objective. To
illustrate the shortcomings of outcome-graded reliance, consider
a decision making task in which the human is historically 60%
accurate, while the Al is 99.999% accurate. On any given instance of
the task, if the human is uncertain of the answer, is it appropriate
to rely on the AI's recommendation? Intuitively, the answer seems
a clear ‘yes’. But if the human later discovers the Al was wrong, the
outcome-graded definition says “Inappropriate,” while the strategy-
graded definition matches intuition and says “Appropriate”

Outcome-graded reliance is similar to complementary perfor-
mance in the sense that both qualities can only be measured post
hoc. However, there are subtle differences between these notions,
beyond the fact that one measures a pattern of human behavior
and the other the performance of a human-AI team. To elaborate,
consider a three-way classification problem, where widgets must be
graded A, B, or C. Suppose Clare and Dave are both 80% accurate at
the task while the Al is only 10% accurate. Luckily, the Al outputs
verifiable explanations, so both Clare and Dave can perfectly tell
when the Al is correct. Suppose Clare follows the policy of accepting
the AI's recommendation when it is correct, and otherwise choos-
ing randomly. Dave also accepts the AI's recommendation when it
is correct, but solves the problem himself when it is not. According
to the definition, both Clare and Dave have perfect outcome-graded
reliance, but their strategies lead to very different expected team
performance: 55% for Clare and 82% for Dave.

Given the limitations of the outcome-graded definition of ap-
propriate reliance, we suggest researchers focus on the strategy-
graded, or eschew the term ‘appropriate reliance’ altogether. We
argue overall performance is a better objective when evaluating a
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Interview study

What are the benefits and disadvantages of using
expandable abstracts to triage scientific papers?

3 - 5 seed papers relevant to
their current research interests
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Findings | Overall utility

Participants liked how the expansions allowed them to surface
details from the paper using simple interactions with the abstracts
rather than manually searching for them over the full papers.

Abstracts have a common structure and served as a jumping-off
point to pull in information from different sections when needed.

Current LLMs achieve more than passable performance on both 1)
answering user’s questions and 2) inferring a user’s information
need based on context.

Participants were surprised at the quality of the generated
expansions. Everything “looked” factual, and seemed to “extract
meaning” from the paper rather than just summarize.

Participants mentioned how the Al-generated questions “seemed
to almost read my mind when | click on something or highlight
something.”



Findings | Multiple layers of affordances

The concert of mixed-initiative interactions satisfied the majority
of user’s information needs while reading an abstract.
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ABSTRACT
The current literature on Al-advised decision making — involving
explainable Al systems advising human decision makers — presents
a series of founding resuls. To sy

findings, we propose a simple theory that elucidates the frequent
failure of AT explanations to engender appropriate reliance and
complementary decision making performance. In contrast to other
common desiderata, e.g, interpretability or spelling out the AT's rea

soning process, we argue explanations are only useful to the extent
that they allow a human decision maker to verify the correciness of
the AT’ prediction. Prior studies find in many decision making con-
texts Al explanations do not facilitate rification. Moreover,
most tasks fundamentally do not allow eas

cation, regardless
of explanation method, limiting the potential benefit of any type of
explanation. We also compare the objective of complementary per-
formance with that of appropriate reliance, decomposing the latter
into the notions of outcome-graded and strategy-graded reliance.

1 INTRODUCTION

Recent years have seen an explosion of work on explainable AT
(XAI, but there have been mixed results on whether explanations
actually help humans who are making decisions with Al support
In this decision making context, the role of explanations is to foster
appropriate reliance by helping the human understand whether
or not the AI's advice should be trusted. Appropriate reliance is
desired in order to achieve complementary performance, where
the human-Al team performs better than either the human or AT
alone [7]. But here we see a confusing montage of results: not
only do most find explanations don't induce

performance more than baseline methods, such as displaying Al
accuracy or confidence, but these papers suggest explanations can
in fact inerease over-reliance, where the human trusts the Al even
when it errs. The inconclusive nature of these results raises a huge
question for the field of XAI when are explanations useful?

We focus solely on the process of Al-advised decision making,
defined as the following: given an instance of a decision making
task, an AT makes a recommendation, and drawing on features of
the task, the AI's recommendation, and possibly an explanation
for the AI's recommendation, a human decision maker arrives at
a final decision (Figure 1)
Al explanations [47, 79],incl
€. to help the human understand whether the Al's reasoning
generalize, but our arguments pertain only to decision making,

In this paper, we present a perspective we believe explains the
seemingly mixed empirical results found throughout the XAI lter
ature. Furthermore, our proposal is consistent with the way human

Daniel S. Weld
danw@allenai.org
Allen Institute for AT &
University of Washington
Seattle, WA, USA

N

Recommendation

Human n

Bacision Assessment

Model Audit

Decision Making

Figure 1: Researchers suggest that Al explanations could aid
numerous human-Al processes, including decision making,
maodel development, knowledge discovery, and model audit.
In this paper, we focus solely on understanding whether ex-
planations are helpful in the context of Al-advised decision
making. We claim Al explanations cannot foster appropri-
ate reliance and engender complementary performance in
decision making, except in the rare instances in which they
efficiently verify the Al's recommendation,

groups reach consensus on “intellective” tasks [52]. We argue ex-
planations provided by an Al model are helpful in decision
g (eng: [7]) to the
extent they allow a decision maker to verify the AI's recom-
‘mendation. While this theory may appear self-evident,

(1) Most work on XAI has focused instead on creating inher-
ently interpretable models or generating faithful post-hoc
explanations of the AIs reasoning process.

(2) Most of these explanations do not support such verification.
Explanations which faithfully expose the Al's reasoning process
may well be useful for debugging the Al or predicting its ability
to generalize, but it does not seem to help human decision mak-
ers make judgements on individual task instances. Indeed, most
human-subject studies have shown that explanations fail to produce
complementary performance in decision making; the sole excep
tions are explanations that support answer verification (Table 1),

The rest of this paper is structured as follows. The next section
surveys the conflicting results from prior studies on XAl utility.
Section 3 details the decision making context, which is our focus in
this paper. Section 4 presents our core argument — explanations
must facilitate verification in order to engender complementary
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Findings

How did participants use each of the features?

Participants
...more often selected an Al-suggested expandable entity | Outcome-graded reliance gafines a reliance behavior based on human
(775%) rather than hlghllghtlng their own (225%) acceptance of Al advice cohditioned on the post-hoc correctne_s§>f the Al
: : N
...selected the Al-suggested question 40% of the time, and the How is strategy-graded reliance calculated?
static questions: Define: 23%, Expand: 23%, Why: 14% [m Define | SZExpand | ? Why

...created threaded expansions 58% of the time, suggesting the
recursive expansions prompted users to ask followup questions



Deployment study

How do scholars use expandable abstracts in the wild?

To characterize real-world usage, we
created expandable abstracts for the Vi %*32023
proceedings of VLDB 2023.

275 unique users interacted with the abstracts
over the two week deployment period.



Findings

How did scholars use each of the features?

Scholars
...more often selected an Al-suggested expandable entity (80%) | Outcome-graded reliance glgfines a reliance behavior based on human
rather than hlghllghtlng their own (20%) acceptance of Al advice conditioned on the post-hoc correctnes€30f the Al.
: : )
...selected the Al-suggested question 12% of the time, and the How is strategy-graded reliance calculated?
static questions: Define: 31%, Expand: 42%, Why: 15% Cj| Define | S2Expand | ? Why
...created threaded expansions 28% of the time, suggesting the
recursive expansions prompted users to ask followup questions
...viewed the attributed evidence 15% of the time, and jumped Excerpt from page 7 See in paper context

into the paper PDF 40% of the time after viewing the evidence

Different usage patterns likely due to different levels of engagement.



Risks of expandable abstracts

Augmented intelligence for scholars may harm pedagogical
and self-learning processes, especially for novice scholars.

“In the research realm, | don't think people should be reading just the abstract.
With this system, | don't think it's that great to just replace the paper reading
experience with just expanding the abstract all the time and trying to get
details instead of actually reading the paper. You can use this as a map for going
to the sections of the paper you want to read, and that's fine. But | don't know
... If this somehow promotes this culture within research that all we need to
read is the abstract and | don't think that would be very great either” — P3

LLM hallucination remains a problem, and verification of generated
expansion accuracy can often be challenging or undesirable.

“When | try to paper in writing my related work, paper writing, the evidence
button plays a huge, different role. Because | need to see whether the
responses they are generating are correct or really match with the paper. But
during the time of abstract exploring, I'm not too caring about the evidence,
where they come from in the paper.” — P1



Improving expandable abstracts

ME Incorporate visual media (e.g., figures and tables)
iInto expansions when relevant.

Expand with content from other papers (e.g.,
3890 expand to show other papers that use similar terms,

or show other papers building on this paper).

B — Use the expansions to help scholars smoothly
:{% transition into reading the full paper.



Expandable Abstracts

Bridging Scholarly Abstracts and Papers with Recursively Expandable Summaries
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